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Abstract—In this paper, we analyze privacy-enhancing proto-
cols for Smart Grids that are based on anonymity networks. The
underlying idea behind such protocols is attributing two distinct
partial identities for each consumer. One is used to send real-
time information about the power consumption, and the other
for transmitting the billing information. Such protocols provide
sender-anonymity for the real-time information, while consoli-
dated data is sent for billing. In this work, the privacy properties
of such protocols are analyzed, and their computational efficiency
is evaluated and compared using simulation to other solutions
based on homomorphic encryption.

I. INTRODUCTION

Smart Grids are the evolution of the existing power grids.
Visible aspects of Smart Grids are the electronic meters, called
smart meters that monitor the users’ electricity consumption
and the harvested data to the electricity provider. Electricity
providers are empowered with a fine-granular control over
their distribution network and, thus, can better manage and
balance the load in their networks. Real-time measurements of
power consumption also allow the introduction of flexible pric-
ing policies, i.e., the kilowatt hour retail price may fluctuate
according to the demand, being more expensive during peak
hours. Two-way communication between smart meters and
providers allows the real-time retail price to be communicated
to users, which can decide whether or not to turn on power-
demanding devices. Smart meters can be connected to the
home area network, in such a way that home appliances can
be remote controlled. For example, in case of brownouts,
Smart Grids could assign priorities for appliances and shut
non-critical devices down.

Other advantages from implementing Smart Grids are the
expected reduction of the ceiling capacity and the better
management of micro-generation. Flexible pricing policies are
expected to reduce demand during peak hours and, there-
fore, reduce the amount reserve capacity and costs. Micro-
generation at the end-user premises can be better managed
with Smart Grids, thus increasing the ceiling capacity. Smart
Grids have a positive impact for all stakeholders: providers
benefit from improved control and reduced operational costs;
users have means to better manage their power consumption;
and the society benefits from a smarter use of resources.

However, implementing Smart Grids incur many challenges.
The scope of this work is the privacy in Smart Grids and
its challenges. Information collected from smart meters can
be used to profile customers by inferring their habits. For
instance, collected data can indicate when a customer is at
home, when she eats and if she has guests or not. User
profiling can of course be performed by other means (such
as electronic cookies on the Internet), but Smart Grids have
the potential to offer a powerful new channel for collection of
personal information that was previously inaccessible.

In this paper, we present an analysis and evaluation of
privacy-enhancing protocols (PEPs) for Smart Grids that are
based on anonymity networks, which implement anonymous
communication protocols. The goal of these networks is to
dissociate item of interests, i.e., messages, from customers.
However, accounting and billing services require customers to
be identifiable. It is possible to discern two different informa-
tion flows with distinct characteristics: one for the real-time
control data that is used to manage the power grid and another
for billing and accounting information, which has no real-
time requirements. The former information flow is forwarded
by an anonymity network, which dissociate customers from
consumption data. The latter is sent directly from customers
to providers (as bills are computed by the smart meters).
Two distinct information flows are created using two unlikable
identifiers: an identity, which is linked to a unique customer
and it is used for billing, and a pseudonym. The real-time
information flow is associated only to the pseudonym, which is
linked to a group of users. In this paper, the privacy properties
of protocols using anonymity networks are evaluated using
analytic methods. We show that the two information flows
are unlikable and evaluate the security and efficiency of PEPs
based on an anonymity network by comparing it with a mech-
anism based on a general case of homomorphic encryption.

This paper is organized as follows. We introduce terms,
definitions and assumptions in Section II. Section III sum-
marizes the background information. In Section IV, we show
why PEPs using anonymity networks require distinct and
unlinkable identifiers and analyze it in Section V. Section VI
presents our simulations results against the generalized case of
homomorphic encryption and Section VII concludes the work.
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II. REQUIREMENTS, DEFINITIONS AND MODELS

In this section, we introduce the terms, definitions, scope
and assumptions used in this work.

A. Terms and Definitions

In this paper, we use a slimmer version of reference model
designed by the National Institute of Standards and Technol-
ogy (NIST) [1], since not all actors and domains are necessary.
The relevant domains for our work are:
• Customers: represent the end-users. They may also gen-

erate, store and manage the use of the electricity (with
batteries and local generation at the customers’ premises).

• Operations: manage the movement of electricity.
• Service Providers: provide services to customers.
In our analysis, Service Providers and Operations are mod-

eled as a single domain, the SP & O. It simplifies our analysis
without reducing the validity of the proposed solution, as
the Customers’ privacy requirements are the same for both
Operations and Service Providers. The domains that are part
of the NIST reference model but are not relevant to our paper
are Markets, Bulk Generation, Transmission and Distribution.

B. Problem Definition, Scope and Assumptions

In this paper, we analyze the efficiency of privacy-enhancing
protocols for Smart Grids that provide sender-anonymity for
the real-time data and allow the SP & O to bill Customers
according to a specific pricing scheme. We compare these
protocols with a mechanism based on the general case of
homomorphic encryption. We consider protocols based on
anonymity networks and assume that every meter has two
partial identities, one for each information flow, that are
constructed with two unlinkable digital identifiers:
• a unique and public Customer identifier IdC and,
• a public group (of Customers) identifier IdG.
These two identifiers are further detailed in Section IV. The

distribution of IdC and IdG is out of the scope of this paper
and it is left for future work. We assume that both identifiers
are pre-loaded in the smart meters.

The PEPs analyzed in this paper are not designed to protect
smart meters against side-channel attacks or tampering. We
assume that the operational system and software components
running on the smart meters are trusted.

III. BACKGROUND

Proposals for achieving privacy using data aggregation in
Smart Grids can be divided into two categories: those im-
plemented on the application layer and those on the network
layer. In this section, we summarize these two approaches.

1) Application Layer: Proposals for privacy-enhancing me-
tering using applications for data aggregation are based ei-
ther on homomorphic encryption [2] or other cryptographic
schemes [3] that can be defined as homomorphic functions.
Most of the proposed schemes are constructed using homo-
morphic encryption. It allows mathematical operations to be
computed using pieces of ciphertext. Hence, metering informa-
tion from different Customers can be aggregated before being

transmitted to the SP & O. Different cryptographic methods
can be used to implement homomorphic functions.

2) Network Layer: Sender anonymity can be achieved
using an anonymity network. Smart meters can establish low-
latency peer-to-peer anonymity networks, such as Crowds
[4] or Chameleon [5], [6]. A proposal network layer data
aggregation in Smart Grids is described in [7]. Although it
is not classified as a privacy-enhancing protocol, it resembles
one, as some smart meters behave similarly to MIX nodes [8],
i.e., they collect real-time data from other meters and aggregate
data into a single packet before sending it to the SP & O.

IV. GENERALIZED IDEAS BEHIND PEPS BASED ON
ANONYMITY NETWORKS

In this section, we generalize PEPs based on anonymity
networks for Smart Grids. We show that anonymity networks
can be used to protect privacy in Smart Grids, why it requires
partial identities and also requires the agreement of crypto-
graphic keys.

A. Information Flows and Partial Identities

The nature of information generated by a smart meter can
be divided into two information flows, each with its own
characteristics: one for control data and another one for billing
data. Each information flow has its own requirements. On
the one hand, control data may have real-time requirements,
as it is needed for managing the power grid. On the other
hand, billing data is needed on an arbitrary basis only, e.g.,
monthly. We first show that it is impossible to protect the
Customer’s privacy if both information flows are transmitted
using a same communication channel and there is a direct
connection between the Customer and the SP & O.

Suppose by contradiction that there is a method M that
protects the personal identifiable information (PII) of a Cus-
tomer. Assuming M and choosing any x ∈ PII , the SP & O
does not know x according to the assumption of M . However,
since the SP & O has received the billing information, it has
access to x. Thus, there exist no M .

To protect the Customer’s privacy, it is possible to either
eliminate the direct communication between the Customer and
the SP & O (e.g. by introducing a trusted third party) or to use
two distinct communication channels. We first concentrate on
the use of separation of communication channels.

Each channel has its own characteristics that are given by
the nature of the information. A direct communication channel
between Customers and the SP & O can be established for
sending the billing data. As billing necessarily requires access
to Customers’ PII (such as a unique identification number),
sender anonymity is not required in this channel. On the
real-time control data channel, however, sender anonymity
is desirable as PII is not required for the provision of the
intended service (i.e., to manage the grid). Sender anonymity is
obtained by forwarding the control data to the SP & O through
an anonymity network. Each channel is associated to an
identifier, or partial identity: IdC for the direct communication
channel and IdG for forwarding the control data.
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Privacy can be protected as long as IdG is linked to more
than one IdC and the rate for sending control data remains
higher than the one for sending the billing data. The relation
between the transmission rates of the real-time control data
rc and the billing information rb and its impact to privacy is
described next. It is possible to the SP & O to compromise the
Customers’ privacy if it can link two information flows that
are originated from a given Customer. If rc = rb, then the
SP & O receives the billing information in real-time (i.e., on
the same rate of the control data). Since the SP & O knows
the relationship between the electricity price and the billing
data, then the real-time power consumption information can
be calculated after the billing. Thus, the SP & O can link the
control data back to the Customer.

B. Key Agreement

Secure sessions are needed for transmitting the control data
through the anonymity network. Unless session keys are pre-
deployed, a key agreement protocol is required. The use of
symmetric cryptography only can offer a better computational
performance than solutions based on asymmetric cryptogra-
phy. However, key management can be problematic in large
scale systems, such as Smart Grids. Thus, we assume the use
of the Diffie-Hellman (DH) key agreement [9]. A smart meter
needs to perform one DH key agreement in order to send
ciphered messages with a secret key, and another DH key
agreement to receive ciphered messages with a different secret
key. To improve security, the keys need to be renewed from
time to time. Anonymous authentication means that the SP & O
knows that the meter is valid, but cannot identify which meter
it is. Any key agreement algorithm that does not disclose the
Customer’s IdC can be used.

Symmetric keys, which are the product of the key agreement
protocol, are used to establish end-to-end secure sessions
between Customers and the SP & O. The secure session is used
to forward control data through the anonymity network. The
only information that the SP & O obtains about its Customers
is IdG, i.e., the group identifier. IdG indicates that the meter
is in the set of Customers.

C. Privacy-Enhancing Protocols and Anonymity Networks

Privacy-enhancing protocols based on anonymity networks
can be designed to achieve different levels of anonymity.
In Smart Grids, sender anonymity is required for protecting
the Customers’ privacy. Taking into consideration a general
anonymity network that provides sender anonymity, a protocol
for forwarding the control data can establish an arbitrary
number of secure sessions between a Customer and the
SP & O, where the number of secure session established equals
twice the number of runs of the key agreement protocol, and
assuming that a piece of control data is not forwarded by two
or more different sessions. The level of privacy is equivalent
to the amount of control data information forwarded through
the secure sessions. For instance, if a single secure session
is used for forwarding all control data, it can be compared
with the set containing the billing data, which may lead to

IdC IdG SP & O

Begin session

Billing data

End session

Figure 1. The sequence of messages exchanged by privacy-enhancing
protocols based on network anonymity. Control data is sent using IdG and
billing data with IdC.

individual matches, i.e., the level of privacy tends to zero.
On the contrary, if every secure session forwards a single
piece of control data only (e.g., a single packet), then the
level of privacy is maximum. However, it also results in a
high computational performance cost, as the number of runs
of secure session established equals the number of control data
packets. In our evaluation, we assume that there are concurrent
secure sessions. Figure 1 shows the sequence of messages.

The billing information is calculated by the smart meter,
linked to IdC and sent to the SP & O through a secure
session. The SP & O distributes the current retail price to the
Customers. The total cost Total is:

Total =

T∑
i=1

(αi × βi − γi × δi),

where βi is the Consumers’ buying price, δi is the Consumers’
selling price (i.e., local generation), αi is the electricity
consumption, γi is the amount of locally generated electricity
and T is the number of measurements used in the billing.

V. ANALYSIS

Privacy-enhancing protocols based on anonymity networks
can offer privacy to Customers and access to real-time control
data to the SP & O, which can charge Customers according to a
given pricing scheme policy. A Customer’s privacy is protected
because the control data information cannot be linked back to
her, i.e., no adversary can establish a relationship between
the IdC and the IdG sets. Figure 2 illustrates the relationship
between the sets of Customers (A), IdC (B), IdG (C) and
secure sessions (D).

To show that the SP & O cannot link a Customer (element
of set A) to a secure session (element of set D), suppose by
contradiction that there exists a function f from set C to set
D and two distinguish secure sessions di 6= dj s.t. di, dj ∈ D
are associated to a same IdG. Choosing any element c ∈ C
then f(c) = di and f(c) = dj , therefore di = dj . The same
rationale could be applied in the relationship from set C to B.
Thus, there exists no function between sets A and D.

380



A B C D

Figure 2. The relationship between the Customers’ set (A), the IdC set (B),
the IdG set (C), and the set of all secure sessions (D). There exists a bijective
function between the sets A and B. There exists a surjective function from
set B to C, and another surjective function from set D to C.

Secure sessions are unlinkable between them and a meter
can establish an arbitrary number of concurrent sessions. The
number of sessions observed by the SP & O lies in the interval:

|B| 6 |D| 6
T∑

i=1

|B|∑
j=1

αi,j , (1)

where αi,j is the electricity consumption reported by a Cus-
tomer. The upper bound in Equation (1) is the total consump-
tion observed by the SP & O (e.g., in Watt). Shortening the
lifetime of secure sessions increases the Customers’ privacy
level but decreases the solution’s computational performance,
cf. Section IV-C. The performance of privacy-enhancing pro-
tocols based on anonymity networks is evaluated next.

VI. SIMULATION AND EVALUATION

In this section, we present the results of our performance
evaluation. The evaluation was performed by means of sim-
ulation. The metric is the processing time. We compare the
performance of key agreement protocols required for privacy-
enhancing technologies based on anonymity networks, named
identity-based key agreement (IK) with homomorphic func-
tions (HF ), which are the generalized case of homomorphic
encryption. To the best of our knowledge, most homomorphic
encryption schemes for Smart Grids are based on the Discrete
Logarithm Problem.

Assuming a public key with modulus m and base g with a
block size of r and a ciphertext gxur mod m of a message
x, the homomorphic property using Benaloh’s method [10] is:

E(x1) · E(x2) = (gx1ur1)(g
x2ur2)

= gx1+x2(u1u2)
r

= E(x1 + x2 mod r).
(2)

Using Paillier’s method [11], a public key with modulus m
and base g, and the ciphertext E(x) = gxrm mod m2 of a
message x, the homomorphic property is given by:

E(x1) · E(x2) = (gx1rm1 )(gx2rm2 )
= gx1+x2(r1r2)

m

= E(x1 + x2 mod m).
(3)

We can generalize the schemes (2) and (3) in

Meter︷ ︸︸ ︷
(gx1ur1)

Meter︷ ︸︸ ︷
(gx2ur2) · · ·

Meter︷ ︸︸ ︷
(gxiuri ) (4)

where x1, . . . , xi represent the measurements, and u1, . . . , ui,
g and r are pseudo-random values from Benaloh’s and Pail-
lier’s methods. Equation (4) shows that in HF Customers need
to execute at least 2 exponentiations and 1 multiplication for
each measurement, and the SP & O needs i−1 multiplications.
IK requires 4 exponentiations for Customers and 4 exponen-
tiations for the SP & O for establishing a secure session.

A. Theoretical Results
In our analysis, we take into account only the most expen-

sive operations in terms of processing time [12]. Let E be the
exponentiation cost and M the multiplication cost and i is the
number of measurements. The computational cost of an HF -
based scheme is at least 2iE+iM for a Customer and (i−1)M
for a SP & O. For IK-based schemes, the computational cost
is 4jE for a Customer and 4jE for a SP & O, where j is the
number of secure sessions established.

The total cost HF (i) for HF is 2iE + iM + (i − 1)M ,
where i is the number of measurements. And the total cost
IK(j) for IK is 8jE, where j is the number of sessions. For
calculating the intersection point of the curves HF (i) and
IK(j), we assume that i = j = t, i.e., the number of secure
sessions established is equal to the number of measurements
(a secure session is used for sending one measurement only).
So, 2tE + tM + (t− 1)M = 8tE and then we have

t = − M

6E − 2M
.

Therefore, there is no intersection for t > 0. Thus, the
cost for IK is always higher than the cost for HF assuming
that the number of secure sessions established is equal to the
number of measurements. However, for i 6= j these results
are not necessarily true. The total cost is a function of growth
rate, which has a important meaning, since it provides a better
insight of the relationship between the HF (i) and IK(j). The
growth rate of the functions HF (i) and IK(j) is determined
by the slope of each curve. The slopes are given in function
of the mean cost of a single iteration. We then have{

HF (i) = 2iE + iM + (i− 1)M ≈ i× a
IK(j) = 8jE ≈ j × b

where a is the average cost of one measurement for HF and
b is the average cost for establishing a secure session in IK.

In order to determine the rate between the variables i and
j, where HF (i) is greater than IK(j), i.e.,

HF (i)
?
> IK(j).

We prove that HF (i) > IK(j) for i = 4j, if the modular
exponentiation and multiplication costs are constant. Since
2t− 1 > 0 ∀ t ∈ N∗ and the processing time for M is greater
than zero, so multiplying the inequality by M , we have

(2t− 1)M > 0 ∀ t ∈ N∗. (5)

Adding 2tE to the both sides of the Equation (5) and
reordering it, we obtain

2tE + tM + (t− 1)M > 8

(
t

4

)
E ∀ t ∈ N∗.
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Figure 3. The processing time decreases in relation to the number of real-
time measurements that are sent per secure session established. The processing
time shown in the y-axis is normalized.

And multiplying the resulting inequality by i, we obtain

HF (t) > IK

(
t

4

)
.

Thus, HF (i) > IK(j) for i = 4j, i.e., there are at least 4
measurements sent for each secure session established using
IK, assuming that the modular exponentiation and multi-
plication costs are constant. The performance of IK-based
solutions increases with the number of measurements that are
sent through a secure session, as shown in Figure 3.

B. Simulation Parameters

In our simulation, u, g and r, c.f. Equation (4), are 1024-bit
length, and x has a length of 10 bits (where x is a measure-
ment). The message length for the real-time measurements can
be relatively short, i.e., 10 bits, as it is related to the instan-
taneous recording of electricity consumption characteristics.
The DH parameters are 1024-bit length, with exception of the
module, which is 2048-bit length.

The results obtained from our simulation differ by a factor
of 10 instead of 4 from the theoretical results presented in
Section VI-A because the exponentiation cost is not constant
for the chosen bit lengths.

The simulator was implemented in C using GMP (GNU
Multiple Precision) version 5 as library for multiple precision
arithmetic. The simulator was running on an Intel Core(TM)2
Duo CPU T9400 2.53GHz processor with 4GB of memory.
The operating system was an Ubuntu Linux with kernel
version 3.0.0-12-generic for 64 bits.

C. Simulation Results

We simulated four different cases, and 105 measurements
were generated for each case. In the 1st case, we measured
the Customers’ processing time HFC using HF . In the 2nd

case, we measured the SP & O’s processing time HFS using
HF . The 3rd and 4th cases are the analogous to the first two,
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but using IK instead of HF , where IKC is the processing
time in the Customers’ end and IKS is the processing time
in the SP & O’s end. The results are presented in a box plot
in Figure 4. The lower and higher quartiles are very close to
median in all cases.

The results for a and b determine the slope of the following
functions:{

HF (i) = 2iE + iM + (i− 1)M ≈ i× a = i× 0.004

IK(j) = 8jE ≈ j × b = j × 0.04
.

To validate our findings regarding the fitting to a linear
approximation, we compared the curves produced by functions
HF (i) and IK(j) to the results obtained in the simulation.
Figure 5 shows the fitting between the functions HF (i) and
IK(j) and the HF and IK curves obtained in our simulation.
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Let IKi be a family of functions given by IKi = IK
(
j
i

)
.

It describes more than one measurement sent over a single
secure session established using IK. There is a function in the
family IKi that corresponds to the function HF (i), namely
IK10. Figure 5 shows that IK = IK1 and HF = IK10.
It also shows the curves for IK2, IK3 and IK40. The
performance gain in relation to i is shown in Figure 3.

D. Comparison with Related Work
Protocols based on homomorphic encryption, e.g. [2], have

a high computational cost due to modular exponentiation [12].
Using homomorphic functions for privacy protection means
that every measurement requires at least 1 multiplication and
2 exponentiations. Homomorphic functions are not fair in the
distribution of the computational costs for the parties involved
in the protocol, as most of the computational costs falls on
the Customers’ side. It means that demanding cryptographic
operations need to be computed using the rather limited
resources of the smart meters.

Privacy-enhancing mechanisms that are based on anonymity
networks may, however, leak personal information. Sending
more than one measurement per secure session intuitively
degrades the Customers’ privacy level. These schemes also
require the deployment of an anonymity network, which may
increase the communication delay (round-trip time) between
Customers and the SP & O. Peer-to-peer anonymity networks
require peers to forward data, which may introduce an addi-
tional computational cost for the smart meters.

The network layer data aggregation proposed in [7] was
not designed for protecting the Customers’ privacy, as the
SP & O and the aggregator can link measurements to their
sources. However, if we assume that the aggregator is trusted,
it is possible to modify the proposal shown in [7] to enhance
Customers’ privacy, in exchange for a higher computational
cost for the aggregator.

VII. CONCLUSIONS

We presented an analysis and evaluation of PEPs for Smart
Grids that are based on anonymity networks. These protocols
protect the Customers’ privacy without hampering electricity
providers from obtaining real-time control data information
from the metering infrastructure and allow Customers to be
correctly billed.

The underlying idea is to exploit the different nature of
the information flows needed in Smart Grids. We showed that
each information flow needs to be associated to an identifier,
or partial identity. Customers have two partial identities: IdG,
which is used for sending real-time control data; and IdC,
which is used only for billing. IdC is linked to the Customer’s
real identity, while IdG does not contain any PII and is a group
identifier, which is related to a set of Customers. The privacy-
enhancing protocol based on anonymity networks provides
sender-anonymity to the Customers for the real-time control
data towards the SP & O.

We analyzed a general privacy-enhancing protocol based on
anonymity networks and compared its computational perfor-
mance with a homomorphic encryption scheme. The former

was generalized as a key agreement mechanism IK and the
latter was abstracted as a generalized case of a homomorphic
encryption scheme HF . Privacy-enhancing protocols based
on anonymity networks require other security mechanisms,
such as symmetric encryption, but IK is its most demanding
component in terms of computational performance.

The evaluation was carried out by means of simulation. The
metric used was the measured processing time. For IK, it was
the time required to establish a secure session. And for HF ,
it was the time needed to encrypt a control data message (as
secure sessions are not required to be established in the case of
HF ). We also analyzed the distribution of the computational
load between Customers and the SP & O. We showed that the
processing time required for IK is lower than for HF .

Privacy-enhancing protocols based on anonymity networks
have three limitations. Firstly, its improved computational
performance is obtained at the cost of reduced privacy pro-
tection. Increasing the amount of measurements forwarded
through a secure session may have negative impact on a
Customer’s privacy level. Secondly, as there are no aggregation
of measurements, it is possible in theory to correlate the real-
time information to the billing data. Finally, the deployment of
an anonymity network results increases the end-to-end delay
for messages to reach the SP & O [6] and also incur in extra
computational costs that are needed to forwarding messages.
In the future, we intend to further analyze and quantify those
limitations.
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