
A Lightweight Distributed Group Authentication Mechanism

L. A. Martucci†, T. C. M. B. Carvalho and W. V. Ruggiero
Department of Computer Engineering and Digital System - University of Sao Paulo – Brazil

email: {lmartucc, carvalho, wilson}@larc.usp.br

Abstract

Identifying trustable devices and establishing secure tunnels between them in ad hoc network environments is a
difficult task because it has to be quick, inexpensive and secure. Certificate-based authentication mechanisms are
too expensive for small devices. The use of such mechanisms must be controlled and reserved for special
situations, (e.g. banking applications) but not for everyday transactions. In addition, indiscriminate use of
asymmetric ciphering and certificate-based authentication is a shortcut to battery exhaustion attacks. This paper
describes a lightweight distributed group authentication mechanism suitable for ad hoc network devices
requirements. We introduce the concept of group authentication, the target of which is not the individual
identification of devices, but to verify if a device belongs or does not belong to a trusted group. The proposed
mechanism verifies if devices have a pre-shared secret and sets new cipher keys each time it runs. This
mechanism requires loose synchronization among the devices’ real time clocks to thwart replay attacks. It also
mitigates the effects of battery exhaustion attacks due to its lightness.

Keywords

Security, Group Authentication, Ad Hoc Networks.

1. Introduction

Securing ad hoc mobile environments is not easy to be achieved in a quick, inexpensive and secure
way. Security cannot rely on central servers, as there are no guarantees that they will be in radio
range all times - devices’ availability and motion are quite unpredictable in mobile ad hoc networks.
Besides, complex configurations must be discarded, as target users of mobile ad hoc applications are
the common audience and not security specialists.

In this paper, we propose a simple, but efficient, lightweight distributed group authentication
mechanism that can be applied to the following scenario: a set of devices that belong to a single
administration authority, such as a single user, a group (e.g. a family) or an enterprise that needs to
exchange or synchronize data among devices, with or without the users’ concern. In this paper, each
set of devices is called security cluster. Each security cluster is composed of trusted devices that can
recognize participants of known clusters through a mechanism called group authentication. While
an individual authentication mechanism tries to identify devices and/or users univocally, group
authentication only checks if two devices belong to a same (i.e. trusted) group. It is based on pre-
shared secrets, which are distributed among devices of a security cluster (how this is achieved
exactly is out of the scope of this paper).

Group authentication may be the only authentication mechanism available, but if a pre-shared secret
is exposed in a single device, the whole group is compromised, as the secret is common to the entire

† Now with Karlstads Universitet - Institution för Informationsteknologi - Datavetenskap - Sweden

group. Group authentication can also precede individual authentication, in order to increase security,
save power and even protect users’ identities, as shown in this paper. The idea behind the proposed
mechanism is straightforward and intuitive enough even for those not familiar with network
security. It is extremely powerful as it can set strong short-term symmetric keys, which are never
transmitted over-the-air, between devices. In addition, it is also completely transparent to the end-
user. The lightweight distributed group authentication can be applied to ad hoc and non ad hoc
networks, but its advantages are noticed on low-resource distributed computer environments.

The proposed distributed authentication mechanism can be applied at any OSI layer (from data link
to application) and be bound to other authentication mechanisms, such as certificate based ones.
Nevertheless, for specific cases group authentication may be enough (e.g. devices hosting non-
critical services or low processing power and/or scarce battery resources). However, individual
authentication may be necessary for devices hosting sensitive services and/or data. In these cases,
the proposed mechanism can drastically reduce the number of unsuccessful authentication attempts
using digital certificates and asymmetric keys, saving precious battery power.

This paper is organized as follows. In section 2, we present the architecture of the distributed group
authentication mechanism preceded by a detailed description of how it works and sets new secret
keys between devices. Section 3 evaluates the mechanism’s security and its lightness compared to
other mechanisms. Section 4 gives a survey to the related work, presenting some security
mechanisms based on the same assumptions as this. Finally, conclusions are presented in section 5.

2. Lightweight Distributed Group Authentication Mechanism

Ad hoc networks’ future environments (e.g. pervasive computing, sensor networks, etc.) rely
on devices with major constraints regarding battery resources, processing power and available
bandwidth. Thereupon, security mechanisms suitable for those devices are utterly important,
as the establishment of a secure communication channel with a resource-expensive
mechanism can lead to a successful battery exhaustion attack (Stajano and Anderson, 1999).

Before describing the proposed mechanism itself, we need to share our foresight of how ad
hoc networks will be deployed in short and medium terms, as it will clarify the understanding
and the meaning of this mechanism. From our point of view, the great majority of ad hoc
networks will be of networks whose devices have something in common, such as their
ownerships (e.g. an enterprise, a family, etc.) or placement (e.g. a meeting room, a house or
even the streets). This presumption is reasonable, as several security mechanisms designed for
ad hoc networks share this same foresight. In addition, we assume that it is possible to divide
the whole ad hoc universe in small clusters of trusted devices (a similar approach can be
found in (Capkun et al., 2003)). Furthermore, we assume that it is possible to set a pre-shared
key among participant of a security cluster. Naturally, these clusters will overlap, as one device
may belong to one or more groups. Figure 1 illustrates a mobile network, composed by several
mobile devices divided in three security clusters (I, II and III).

The conclusion seems to be simple: if it is possible to set a pre-shared secret among devices
that belong to a same security cluster, it is also possible to set secure sessions among them.
However, important issues are concealed and have no easy answers: How are secure sessions
going to be established? Is the lightweight distributed group authentication mechanism
suitable? And why? This section attempts to provide answers to these questions.

I
II

III

devices

Clusters of
trusted devices

Mobile Network

Devices that belong to
more than one cluster

radio range

Figure 1: The ad hoc network universe divided in several clusters of trusted devices.

2.1 Authenticating Devices

In a few words, our distributed group authentication mechanism could be described as follows: first,
the pre-shared secret k, which was previously set among devices belonging to one security cluster, is
used as key input of a secure hash function (HMAC) with the current local time value, t1, as data
input. The output of the HMAC function, called 1st nonce, is divided in three equal parts (a, b, c).
After that, the timestamp t1 and first part a are transmitted in a challenge message. A nonce can be
set from one or more runs of the HMAC function. This initial step is illustrated below:

• () ()cbanoncetH st
k ,,11 == , challenge message ()1,ta=

How exactly and to which devices in the ad hoc network this information will be transmitted
depends on which OSI layer the mechanism was implemented. On layers 2 and 3, for instance,
broadcasting is the best option, but if implemented in layers 4 to 7, a TCP connection should be
established before any data can be exchanged (see also section 3). After having receiving the
challenge message, any other device from the same security cluster (shared-secret key k is known)
is able to reproduce the 1st nonce using timestamp t1, and to recognize the slice a of the received
challenge message as valid. Every device that receives and recognizes a challenge message
generates a 2nd nonce, using the shared-secret k as key input of the HMAC function and a second
timestamp t2 as data input. The 2nd nonce is divided in three parts (x, y, z). The slice z is set as
symmetric cipher key and is used to establish a cryptographic tunnel between the devices. Response
message is then assembled with x and b and ciphered with z. Notice that the symmetric cipher key z
was generated in run-time. The timestamp t2 is also added to the message. This response message is
sent back to the first device. Notice that only peer-to-peer (and no multiparty) authentication exists,
as different t2 are expected from different devices. This sequence is presented below:

• () ()zyxnoncetH nd
k ,,22 == , response message []()2,, tbxEz=

The first device can reproduce the 2nd nonce from the received timestamp t2 and generate the
symmetric key z. After that, it must decipher the message payload and check its contents, x and b. It
then assembles the last message of our authentication mechanism. The last message contents are c
and y, both ciphered using z as symmetric key.

• response message recognized, last message []()cyEz ,=

The Last message is used for confirmation purposes. After receiving the last message, the second
device is sure that the first device really knows the symmetric key z and, hence, y and k. When this
protocol ends, two devices from a same security cluster can securely exchange data using z as
temporary symmetric cipher key. The protocol described above can also be restarted at any moment
in order to re-authenticate both ends and set a new, fresh temporary cipher key z’, which is also
never transmitted over-the-air and with only two HMAC additional runs. A deeper evaluation of the
mechanism from the security point of view is provided in section 3.

2.2 The System Architecture

The proposed mechanism should be placed between the internal system (e.g. software application)
and the external communication (e.g. wireless interfaces), as a security middleware (see subsection
2.4). Figure 2 shows the architecture of the proposed mechanism and its internal building blocks.

HMAC is a suitable sequence generator for our mechanism, as its inputs are: a secret key and a data
input (timestamps in our case). Moreover, it has a 160-bit long hash value output (with SHA-1 as
embedded hash function). The two basic requirements for sequence generator candidates were:

• It must be cryptographic secure, or polynomial-time unpredictable.
• It must accept an arbitrary value as input parameter (the timestamp).

The Seed Box is a storage unit responsible to hold all known pre-shared keys kn, where each kn
corresponds to one different secure cluster. Each kn receives a mnemonic name, assigned by the
device’s owner, to be easily associated to a secure cluster. The I/O is the building block responsible
for the communication of the mechanism with the network communication interfaces (the layer just
below the mechanism). The Control Unit has four functions: the first is to be an interface between
the mechanism itself and applications from upper levels. The second regards re-keying and the last
two are directly related with security: source address and timestamp verification and message
ciphering. Messages are only considered valid if their timestamps values are within the lower and
upper bounds of a time window set around the device’s current time given by its real time clock.

The Active Messages is a storage unit responsible to store all valid sent messages, the timestamps
and nonces. This block is particularly useful to prevent message fabrication attacks (see in section
3). Every message sent is considered valid if it is not expired. Expiration is determined by messages’
timestamps. Active Messages storage blocks also checks if timestamp information is used more than
once and discards messages with repeated timestamps, in order to increase security.

HMAC I/O

Seed
Box

Control Unit Active
Messages

Source/Time
Analysis

Symmetric
Cipher

Internal System

External Communication

Figure 2: The Architecture of the Lightweight Distributed Authentication Mechanism

2.3 Loose Synchronization among Devices and Modular Security

Devices belonging to the same security cluster must have their clocks loose synchronized; otherwise
their peers may discard authentic challenge messages if the message’s timestamp is out of the
bounds defined by the time window. Therefore, time windows should not be set too narrow if no
time synchronization service is available in the network (e.g. a local NTP - Network Time Protocol -
running for members of a security cluster only). The design of our distributed group authentication
mechanism is completely modular. Therefore, it can be associated with other security mechanisms.
If individual authentication is mandatory, a certificate-based authentication can happen just after the
secure tunnel to be set between the devices that had already gone through the lightweight group
authentication. This fact is particularly important when dealing with mobile devices, because their
resources are often scarce and the indiscriminate use of expensive functions, as certificate-based
authentication, must be reserved to very special situations or critical applications only.

2.4 Re-Authentication, Re-Keying and Implementation Layer

Any peer can request at anytime a renewal of the group authentication procedure to set a new
symmetric cipher key z between the devices. The re-keying is transparent to upper layer applications
and is made inside the secure tunnel already set, thus the re-keying procedure is concealed from
outsiders (that are not aware of the re-keying procedure). In addition, re-authentication frequency is
not fixed, and shall be agreed between communicating devices. Group authentication mechanism
can be implemented at any layer of the OSI protocol (from data link to application), but security
aspects change regarding to the chosen OSI layer. For instance: a data link layer implementation can
only offer data link security, what can be used to conceal the device’s hardware address and, thus,
prevent tracking. On the other hand, upper-TCP implementations offer end-to-end security and can
be used to tie applications to security clusters, in order to increase control over applications network
access.

3. Security Evaluation

In this section, we provide a security evaluation of the proposed distributed group authentication
scheme using an attack-oriented approach. We also emphasize its lightness and estimate how much
power can be saved by its deployment along with a certificate-based solution, instead of relying on
certificate-based solution only. Theoretical attacks against our mechanism are performed to evaluate
its efficiency to thwart them, protect devices and transmitted data. The most relevant security attacks
against our mechanism are: fabrication (including replay attack), man-in-the-middle (MitM) and
brute-force attacks. All them proved infeasible against our mechanism. We had also implemented a
prototype of the proposed mechanism using Java and 64-bit UTC (Universal Coordinated Time)
timestamps. Our prototype runs over TCP and precedes a TLS procedure, allowing the certificates
to be exchanged by the devices communicating inside a secure tunnel, protecting users’ identities
from potential attackers. The implementation is a peer-to-peer application, suitable for ad hoc
networks.

3.1 Man-in-the-Middle (MitM) and Replay Attacks

A man-in-the-middle attack, or just MitM, happens when an attacker device E places itself in the
middle of two legitimate devices A and B and masquerade as B to A and as A to B. Our proposed
scheme thwarts MitM attacks as symmetric key k is set on both ends A and B and the rest of the

communication between both ends is done inside a secure tunnel. Therefore, intermediary nodes
only forward ciphered packets (with the very exception of challenge messages).

Replay attacks are a combination of two different network attacks: a passive attack (interception)
and a fabrication attack. An attacker E can easily capture valid messages being exchanged between
two devices, A and B, that belong to the same security cluster S, without being noticed. After that, E
may try to reuse this information by sending it to a fourth device, C, that also belong to S. The
protection against replay attacks is provided by the use of timestamps as HMAC data input. The
Control Unit block ignores challenge messages with timestamps that were already used and the
Active Messages block, in association with Control Unit block, prevents response or final messages
to be received without being related with a challenge message. In addition, only messages with a
valid timestamp (within device’s time window) are accepted. Therefore, a captured challenge
message have to be retransmitted before its validity expires, otherwise it is useless.

3.2 Brute-Force Attack

A brute force attack consists of trying every possible key until the right one is found. If an attacker
captures a challenge message, it can produce and send multiple response messages back to the
originator. The lifetime of the challenge message is used to protect the device against this attack, as
no response shall be expected to an expired message. Lifetime defines the period susceptible to
brute-force attacks. The Control Unit’s source analysis tracks the source address of the incoming
response messages and checks if multiple answers are coming from a single device (and, eventually,
blocking messages arriving from it). Intercepted messages may also be submitted to a brute-force
attack in order to obtain the shared-secret k. However, finding out a shared-secret key of 160 or 512-
bit long is extremely expensive. If we assume that generating one nonce and comparing its first part
with another part captured from a challenge message takes around 1000 cycles (950 cycles for
SHA-1 (Bosselaers et al. 1996) and 50 more for other digital operations needed), a state-of-art 3GHz
microprocessor fully committed on finding a 160-bit long key k would take approximately 7.7x1033
years to find it out (assuming that the attacker discover k in n/2 attempt, where n is the maximum
number of attempts). On the other hand, the effectiveness of a brute-force attack over the symmetric
cipher key z depends on the length of z, and on the output length of HMAC.

3.3 Lightweight Power-Saving Mechanism

Lightness may sound a bit strange for a security evaluation section, although it is a fundamental
security matter when we aim ad hoc network devices with low battery resources. Power saving is a
need and the proposed mechanism spends it wisely. Small devices running applications that don’t
need individual authentication can establish secure tunnels without the need of asymmetric ciphers
as new shared-key are set between devices with only two HMAC runs. However, if a service truly
demands individual authentication, certificates are exchanged as soon as the secure tunnel is set.
This procedure helps devices to save battery power, as a high percentage of arriving certificates are
expected to be valid, as they already had gone through group authentication, mitigating battery
exhaustion attacks effects.

4. Related Work

Our lightweight power-saving distributed group authentication mechanism is based on the
association of shared-secret and a secure sequence generator that takes as input parameter public

information (timestamp) and a secret. Authentication mechanisms that rely on the same assumptions
and authentication systems for mobile communications are reviewed in this section.

SecurID authentication (RSA Security, 2001) is also based in a pseudo-random number generator
and time information, although it is not a distributed solution, since it relies on a centralized
authentication server. Moreover, SecurID uses tokens working as number generators, and
passwords. SecurID and our mechanism goals are not the same, as SecurID pursues user
authentication, while ours seeks group device authentication. Furthermore, our group mechanism is
transparent to end-users, and also sets a secure tunnel between devices. The SIM (Subscriber
Identity Module) is another authentication system used in GSM mobile systems based on a one-way
hash function module (Schmidt et al., 2002). SIM relies on challenge-response procedures, with 128
bits keys, but only 32 bits of response. SIM is transparent to end-users and also lightweight, suitable
for mobile devices, but it relies on centralized servers to verify incoming responses message.

IEEE 802.11 WEP is based on a PRNG that generate sequences to be used to cipher messages.
However, the RC4 PRNG using a secret key of 40 bits is considered weak, and several attacks over
WEP were published in the last few years (Borisov et al., 2001), and even open-source tools to
break it are freely available. The lighter IEEE 802.11i next-generation security protocol for wireless
networks being evaluated is the TKIP (Temporary Key Integrity Protocol) (Walker et al., 2002).
TKIP masks WEP weaknesses, encrypting data with secret keys of 128 bits, periodically renewing
the symmetric cipher key and preventing IV (Initialization Vector) to be repeated with the same
cipher key. However, the re-keying relies on an EAP-based server, a centralized device. Moreover,
IEEE 802.11i CCMP (Counter Mode with CBC-MAC Protocol) proposal also has its key
management relying on an EAP-based server. Therefore, none of these two IEEE 802.11i security
proposals are suitable for an ad hoc network unless every device on the ad hoc network runs an
EAP-based authentication server. Furthermore, the only EAP that meets all IEEE 802.11i
requirements is the EAP-TLS, which works with digital certificates and asymmetric cryptography.

IKE with a pre-shared key (Harkins and Carrel, 1998) can also be used as pre-authentication
mechanism. Its advantage is that no loose synchronization among devices real-time clock is needed.
In addition, only three messages are needed with IKE authentication with pre-shared keys in
aggressive mode (the same amount needed by the pre-authentication mechanism described
previously). However, IKE with pre-shared keys has a major drawback that impacts power-
consumption: messages can be replayed. Even though a replay attack will not succeed, as attackers
do not have the pre-shared-key, replayed challenge messages are always replied, as there is no time
information in the message payload. Therefore, a replayed challenge message will, initially, pass as
authentic for the IKE Responder and will be replied, causing battery power to be spent (data
transmission mode is the most expensive mode in terms of energy consumption (Feeney and
Nilsson, 2001). In conclusion, it is not difficult to foresee that IKE authentication with pre-shared
keys spends more battery power than the pre-authentication mechanism presented in the previous
subsection when submitted to a battery-driven attack.

SKEME with a pre-shared-key (Krawczyk et al. 1997) is also a candidate for pre-authentication
mechanism. SKEME with a pre-shared key advantages are basically the same of IKE with a pre-
shared key: real time synchronization among device’s real time clock is not needed and only four
messages are exchanged between mobile devices. However, its disadvantages are also the same as
IKE with a pre-shared key: replayed messages will be answered, and battery power spent. The
conclusion is exactly the same of IKE with pre-shared keys: it will spend more battery power than

the pre-authentication mechanism presented in the previous subsection when submitted to a battery-
driven attack.

5. Summary & Conclusions

In this paper, we have proposed an efficient lightweight distributed group authentication mechanism
as a feasible solution to secure mobile ad hoc networks. We have shown how group authentication
works and how it is implemented, assuming that it is possible to distribute a secret among trustable
devices. We also have explained how a secure tunnel is set between each pair of mobile devices and
how a symmetric cipher key is derived from an initial pre-shared secret. We also illustrated how we
renewed the symmetric cipher key automatically in a distributed environment. We associated a
name to each security cluster to make it intuitive and straightforward even for the common
audience.

Group authentication provided by the proposed mechanism can be sufficient for almost every
wireless device. Moreover, we believe that individual authentication is restricted to few applications,
and the lightness provided by our mechanism when compared with certificate-based mechanisms,
justifies its use as everyday solution for security. We have also illustrated how the proposed
mechanism thwarts security attacks, such as MitM and replay attacks. On purpose, we have not
selected a specific symmetric key cipher for the proposed mechanism, as we were aiming an open
solution that works with any kind of mobile devices, even with legacy and simple devices with very
few resources and computational power. We emphasize that the proposed mechanism is not only an
ad hoc networks secure solution, and can be set on any kind of computer networks, offering a light
and distributed security solution.

6. REFERENCES

Borisov, N. Goldberg, I. and Wagner, D. (2001), Intercepting Mobile Communications: the insecurity of 802.11.
In: International Conference on Mobile Computing and Networking - MobiCom’01. Proceedings. Roma, Italia.

Bosselaers, A., Govaerts, R. and Vandewalle, J. (1996), Fast Hash on the Pentium. In: Advances in Cryptology -
CRYPTO’96, Lecture Notes in Computer Science, Springer-Verlag, Proceedings. Santa Barbara, CA, USA.

Capkun, S., Hubaux, J.P. and Buttyan, L. (2003), Mobility Helps Security in Ad Hoc Networks - MOBIHOC’03,
4. Proceedings. Annapolis, MD, USA.

Feeney, L. and Nilsson, M. (2001), Investigating the Energy Consumption of a Wireless Network Interface in an
Ad Hoc Networking Environment. In: IEEE Infocom’01, 20. Proceedings. Anchorage, AL, USA.

Harkins, D. and Carrel, D. (1998), RFC 2409. The Internet Key Exchange (IKE). IETF Network Working Group
Request for Comments.

Krawczyk, H., Bellare, M. and Canetti, R. (1997), RFC 2104. HMAC: Keyed-Hashing for Message
Authentication. IETF Network Working Group Request for Comments.

RSA Security Inc. (2001), RSA SecurID Authentication: a better value for a better ROI. RSA Whitepaper.
Available at: <http://www.rsasecurity. com/ products/securid/>.

Schmidt, B. Schimmler, M. and Adi, W. (2002), Area Efficient Modular Arithmetic for Mobile Security. In:
International Conference on Wireless Networks - ICWN’02. Las Vegas: CSREA Press. Proceedings. Las Vegas,
NV, USA. p.208-214.

Stajano, F. and Anderson, R. (1999), The resurrecting duckling: security issues for ad hoc wireless networks. In:
AT&T Software Symposium, 3., Middletown. Proceedings. NJ, USA.

Walker, J. et al. (2002), IEEE 802.11i Overview. In: NIST 802.11 Wireless LAN Security Workshop. Falls
Church. Slides. Falls Church, VA, USA, 2002.

