
Conflict Detection and Lifecycle Management for
Access Control in Publish/Subscribe Systems

Patrick Hein
BearingPoint, Frankfurt, Germany

Debmalya Biswas
Nokia Research, Lausanne, Switzerland

Leonardo A. Martucci, Max Mühlhäuser
Technische Universität Darmstadt, Germany

Abstract—In today’s collaborative business environment there
is a need to share information across organizational boundaries.
Publish/Subscribe systems are ideal for such scenarios as they
allow real-time information to be shared in an asynchronous
fashion. In this work, we focus on the access control aspect.
While access control in general for publish/subscribe systems
has been studied before, their usage in a multi-organizational
scenario leads to some novel challenges. Here a publisher might
wish to enforce restrictions w.r.t. not only subscribers, but also
other publishers publishing certain event types due to competitive
or regulatory reasons. With different publishers and subscribers
having their own preferences and restrictions, conflicts are
evident w.r.t. both publishing and subscribing to specific event
types. Given this, the first contribution of this work is to provide
efficient conflict detection and resolution algorithms The other
important (and often ignored) aspect of large scale and evolving
systems is that of efficiently handling modifications to existing
policies, e.g. a rule may become invalid after a certain period of
time. Our approach in handling such modifications is two-fold:
(i) to maintain consistency and (ii) to automatically detect and
enforce rules which could not have been enforced earlier due to
conflicts. The second contribution of our work is thus to provide
lifecycle management for access control rules, which is tightly
coupled with the conflict detection and resolution algorithms.

Index Terms—Publish/subscribe systems; Access control poli-
cies; Conflict detect and resolution; Lifecycle management;

I. INTRODUCTION

In today’s collaborative business environment there is a

growing need to share information across organizational

boundaries. Instances of such scenarios include large scale

supply chains, e.g. automotive, manufacturing, where com-

ponent development is outsourced to different organizations

who then collaborate to construct and market the final product.

Another scenario for a collaborative business environment

is an e-Services marketplace where different services may

be provided by different providers, with the possibility to

compose new services out of already existing ones. Publish/-

Subscribe systems [1] are ideal for such large-scale distributed

applications. They follow a loosely coupled architecture that

allows interaction among heterogeneous applications hosted

by different organizations.

Access control in publish/subscribe systems is an open

research topic. While there are few research works that have

considered access control models specifically for publish/-

subscribe systems [2], [3], [4], most of them are inherently

centralized and not applicable in a multi-organizational sce-

nario. In other words, they are not space independent as the

publishers and subscribers need to know each other. For a

detailed discussion of related works, the interested reader is

referred to Section VII.

Access control in multi-organizational scenarios leads to

some novel challenges, not addressed in the literature (to

the best of our knowledge). With multiple parties involved,

each organization has its own preferences w.r.t. to who can

or cannot publish (subscribe to) events of specific types. For

instance, a publisher P may wish to be the sole publisher

of events of type X . Such a preference by P implies re-

strictions on other publishers Q also interested in publishing

events of type X . In other words, the preferences of different

organizations may lead to conflicts. The underlying reason

behind such conflicts may be simple economics or legal

regulations the publishers/subscribers have to conform to. The

conflicts may further be generalized to conflicts w.r.t. events

of ’related’ types. For instance, P ’s preference to be the sole

publisher of events of type X may also affect publishers of

related event types Y . In our work, we consider a specific

relationship, that of hierarchically related event types. We

consider a hierarchical ordering among the event types, so that

a preference or restriction w.r.t. an event of type X also has

implications on ancestors/descendents of X in the hierarchical

event model. An orthogonal challenge here is the maintenance

of such systems. Large scale collaborations are usually long

term in the range of several years, and keep evolving over time.

Evolution refers to publishers/subscribers leaving or joining

the ecosystem, or even specific rules becoming invalid after

a certain period of time. We refer to this aspect as lifecycle

management. We outline a couple of motivational scenarios in

the sequel to highlight the above issues in real-life systems.

A. Use Cases

1) Scenario A - Downstream: In scenario A, we con-

sider a group of companies who provide content for a TV

broadcaster. The TV broadcaster is categorizing content for

its customers in different channels (Fig. 1). In this scenario,

publishers are content providers who provide TV content for

subscribers. Subscribers are customers who can subscribe to

different channels. Publishers may be interested in restrict-

ing access to their content because they charge subscrip-

tion fees or they have to enforce age restrictions for some

movies. Subscribers can be described by different profiles

e.g. premium user/normal user or age, for instance. These

profiles can be used to specify an access control for the

publisher’s content types.

2011 IEEE 13th International Symposium on High-Assurance Systems Engineering

1530-2059/11 $26.00 © 2011 IEEE

DOI 10.1109/HASE.2011.50

104

��

�����	
��
��
��� ����

����
� ��
�����	 ������ �����	

��������
������ ���
����	
������

Fig. 1. TV - downstream Scenario

subscribe(soccer) = premium users
subscribe(movies) = premium users ∧ age ≥ 18

To offer a common package of all soccer games, it is

useful for the TV broadcaster to allow subscribers who are

permitted for soccer to also have access to the subcategories

national league and champions league. We call this way of

inheritance downstream. Downstream inheritance implies that

a subscriber having access to events of category X , also has

access to all subcategories of X .

A publisher-publisher conflict between two or more publish-

ers for the soccer channel occurs if one of them is offering

its content only to premium users and the other to all

subscribers. A publisher-publisher conflict w.r.t. hierarchically

related events might be if one publisher is offering its soccer
content to all subscribers and another is offering its content for

national league only to premium users. There are clearly

numerous ways of resolving such conflicts. An option to

resolve the above conflict would be for all involved publishers

to start publishing soccer only to premium users.

We next discuss the ‘evolving’ aspect. If the conflicting

publisher who wanted to restrict access of soccer only to

premium users goes offline, then the previous rule of pub-

lishing soccer to all subscribers can be made active again.

An instance of evolving rules is that of restricting the live

streaming of football matches only when say the World Cup

is going on. Afterwards, some of those restrictions are most

likely not needed anymore.
2) Scenario B - Upstream: Scenario B discusses a manu-

facturing workflow which is hierarchically decomposed into

sub-workflows. Consider the ActivityX as a manufacturing

process which is decomposed into A1 to A3 sub-workflows,

which are again decomposed into the sub-workflows A10 to

A18 as shown in Fig. 2. Engineers are assigned to monitor

the progress of specific (sub-)workflows, i.e. if engineer E

is responsible for A18, then it receives events related to the

progress of A18. Access control is necessary here as engineers

should only receive events related to the (sub-)workflows they

are responsible for. For each non-leaf (sub-)workflow AX ,

as soon as its children sub-workflows terminate, the parts

produced by the children sub-workflows are integrated in

AX . If a failure occurs, then a notification is sent to all

engineers responsible for its children sub-workflows to resolve

the problems among them. This inherently requires that an

engineer (say E) receives events related to A18 be also allowed

to receive events related to all its ancestors A3 and ActivityX .

We refer to this as the upstream pattern. Nowadays, outsourc-

ing is a a very relevant topic for industries and thus, lifecycle

���������	

��

��
� ��

 ��
�

���

��

 ��
� ��
�

��

��
� ��
� ��
�

Fig. 2. Workflow - upstream scenario

management has to make sure that outsourcing and exchanging

sub-workflows still lead to consistent access control rules.

B. Contributions

The goal of our work is to enforce distributed access

control for publish/subscribe systems deployed across multiple

organizations. The proposed framework should:

• Detect and resolve conflicts leading to a consistent set of

access control rules.

• Handle any modifications (over time) in rule specifica-

tions in an automated fashion.

The problem domain is formalized in Section II. We then

make the following contributions:

• Conflict detection (Section III) and resolution (Section

IV): We give conflict detection algorithms for both

publisher-publisher and publisher-subscriber conflicts.

Once a conflict has been detected, different strategies are

discussed that can be used to resolve them.

• Lifecycle management (Section V): We then consider life

cycle management issues and give algorithms to handle

any changes in policies in an automated fashion.

• Experimental evaluation (Section VI): We finally show

the efficiency of our algorithms with the help of a

reference prototype implementation. Test results show

that our algorithms are scalable both from performance

and storage perspectives.

II. PROBLEM FORMULATION

Our system consists of the following actors:

• Publishers and Subscribers: Let P and S denote the set

of publishers and subscribers, respectively.

• Profiles: Publishers and subscribers are characterized by

their profiles, defined as a set of attribute-value pairs.

Let Ap and As denote the attributes’ set applicable to

publishers and subscribers, respectively. Each publisher

(or subscriber) attribute a ∈ Ap (or a ∈ As) is either

alphabetic or numeric. Each alphabetic attribute a can

take one of the pre-defined values v ∈ aV . The possible

values for a numeric attribute a is defined by the range

amin ≤ v ≤ amax. The type of an attribute i.e. whether it

is alphabetic or numeric can be determined from its value,

and we thus use the same notation a to denote both types

of attributes. Given this, the profile of a publisher P ∈ P
can be specified as a subset of attribute-value pairs avp =
(ap, vp): P.profile = {avp1

, · · · , avpi
}, where i ≤ |Ap|.

Subscriber profiles can be specified analogously.

105

• Event types hierarchy: Let E denote the set of possi-

ble event types. We consider a hierarchical relationship

among the event types, denoted as tree(E). We say that

an event of type e1 ∈ E is a subevent (superevent) of

e2 ∈ E , if e1 = e2 or e2 is an ancestor (descendent)

of e1 in tree(E). A subtree(e) for an event e ∈ E
can be defined analogously, constituting of e and all

descendents of e. In real-life scenarios, e.g. scenarios A

and B introduced in Section I-A, it is feasible that the hi-

erarchical organization also imposes some constraints on

the publishers and subscribers w.r.t. the event types they

can publish and subscribe to, respectively. We consider

the following hierarchical constraint scopes:

– Downward: A publisher P (subscriber S) can pub-

lish (subscribe to) events of type e implies that P
(S) can also publish (subscribe to) all descendent

event types of e in tree(E), i.e. the downward scope

applies to all events in subtree(e).
– Upward: A publisher P (subscriber S) can publish

(subscribe to) events of type e implies that P (S) can

also publish (subscribe to) all ancestor event types of

e in tree(E).

• Preferences and Restrictions: For both publishers and

subscribers, only events of specific types are applicable

to them. Applicability depends on both their own prefer-

ences as well as on restrictions imposed by others. For in-

stance, a publisher P1 may only be able to publish events

of type e due to its functional limitations. However, a

competing publisher P2 may aim to be the only publisher

of events e leading to restrictions on what P1 can publish.

Similarly, from the subscriber’s perspective, subscription

costs money and a subscriber S would only subscribe

to event types of its interest. Finally, a subscriber may

also have preferences w.r.t. the publishers from which to

receive events, and vice versa. The above preferences and

restrictions can be specified as follows:

P.publish(e, fncp, fncs)
S.subscribe(e, fncp)
fncp := avp | fncp ∨ fncp | fncp ∧ fncp | ¬fncp
fncs := avs | fncs ∨ fncs | fncs ∧ fncs | ¬fncs
A publisher P uses the rule P.publish(e, fncp, fncs)
to specify that only (i) publishers whose profiles satisfy

fncp are allowed to publish events of type e and (ii)

subscribers having profiles satisfying fncs are allowed

to receive events e. The subscribe() function definition

follows analogously.

A. Conflict Detection and Resolution

We consider a decentralized and autonomous model where

each publisher and subscriber is allowed to specify its own

preferences and restrictions. Conflicts are clearly possible in

such a scenario. Conflicts are possible both among publishers

and also between publishers and subscribers. Conflicts among

publishers are captured as follows:

Definition 1 (Publisher-Publisher Conflict): For a pair of

publishers P1 �= P2 ∈ P , their rules P1.publish(e1, fncp1 ,

fncs1) and P2.publish(e2, fncp2
, fncs2) conflict if all the

following hold:

1) e1 = e2 or e1 and e2 are hierarchically related, i.e. e1
is an ancestor or descendent of e2.

2) A publisher P exists such that P.profile satisfies fncp1

or fncp2 , but not both.

3) A subscriber S exists such that S.profile satisfies fncs1
or fncs2 , but not both.

�
The first condition is necessary to check if there is some

overlap among the events affected by the publish rules of P1

and P2. If the second condition does not hold, there exists a

publisher whose profile does not satisfy say fncp1(fncp2) but

is still able to publish events of type e or of types hierarchi-

cally related to e, i.e. P1(P2)’s publish rule is violated. The

third condition performs an analogous check w.r.t. subscribers

subscribing to events not allowed by P1 or P2. Publisher-

subscriber conflicts can be defined on the same lines:

Definition 2 (Publisher-Subscriber Conflict): For a pub-

lisher P ∈ P and subscriber S ∈ S , rules P.publish(e1,

fncp1
, fncs1) and S.subscribe(e2, fncp2

) conflict if e1 = e2
or e1 and e2 are hierarchically related. Further, at least one of

the following holds:

• P.profile does not satisfy fncp2 .

• S.profile does not satisfy fncs1 .

�
Centralized Access Moderator (CAM): The CAM is

responsible for detecting and possibly resolving any conflicts,

leading to a globally consistent set of preferences and restric-

tions. The CAM maintains a database of the consistent set

of publish and subscribe rules. However it is the individual

publishers and subscribers who are responsible for enforcing

the rules, the CAM only acts as a moderator. Each publisher

and subscriber first sends its publish and subscribe rules

respectively to the CAM for conflict detection. If no conflict

is detected, then the rule is added to CAM’s database. If a

conflict is detected, then a distributed protocol is run among

the affected publishers/subscribers to resolve the conflict with

the CAM acting as orchestrator. The resolution may involve

modification of existing rules in the CAM database, or outright

rejection of the proposed rule is also possible.

B. Lifecycle Management

An adaptive publish/subscribe system needs to be able to

respond to rules becoming invalid in a seamless and auto-

mated fashion. We consider the scenario when a specific rule

becomes invalid. Given this, the corresponding fncp and/or

fncs becomes invalid and a common access control rule for

an event e may need to be changed.

Definition 3 (Lifecycle Management): For each rule

P1.publish(e1, fncpinvalid
, fncsinvalid

)

from publisher P1 ∈ P becoming invalid, the access con-

trol functions fncpinvalid
and fncsinvalid

from publisher P1

become invalid as well. Lifecycle management then consists

of performing the following actions:

106

1) Determine a rule P.publish(e1, fncp, fncs) from the

CAM database which was either rejected or modified

earlier. An appropriate rule e.g. would be the last rule

to be modified or rejected previously.

2) Check if the rule P.publish(e1, fncp, fncs) is in con-

flict w.r.t. Definitions 1 and 2.

• If the rule is not in conflict, restore it.

• If the rule is conflicting, there are the two possibil-

ities: either reject it, or modify it in such a manner

that it is not conflicting anymore.

3) If the selected rule was rejected, apply again the lifecycle

management algorithm with another previously rejected

or modified rule. If no rule got accepted, apply conflict

resolution as describer earlier.

�

III. CONFLICT DETECTION

A. Data Structures

Alphabetical attributes are denoted as:

(Attribute,Attribute-V alue)

Numeric attributes represent a range of possible integer

values {min,max}, denoted as:

(Attribute,min | max,Attribute-V alue)

e.g. (Age,max, 18). Attributes are used to specify the profile

of both publishers and subscribers. As a number of attributes

are needed to describe a profile, we store profiles as list of

attributes. By using a list of attributes, the AND relationships

between attributes in the list holds implicitly.

Attr list =
{(ATTR1, ATTR V1), ...(ATTRN , ATTR VN)}
implies that a subscriber has to fulfill all attributes ATTR1,

· · ·ATTRN . Rules are stored in the CAM database as:

rule(E,P list, Attr list)

where P list is a list of publishers [P1, ...Pn] publishing

events of type E, and Attr list is the list of attributes

specifying the subscriber’s profile for subscribing to E.

B. Publisher-Publisher Conflicts

Publisher-publisher conflicts occur when two or more pub-

lishers would like to enforce separate access control restric-

tions w.r.t. hierarchically related events. The algorithm given

in this section is based on the upwards approach. This implies

that a conflict occurs if the Candidate attr list (abbreviated

as Cattr list) for event E pub from a publisher P is in

conflict with at least one of the Attr lists for event E
whereby E is equal to E pub, E pubup, or E pubdown. The

Cattr list is in conflict w.r.t. an Attr list, if one or both lists

contain at least one conflicting attribute. An attribute ATTR
is conflicting in List1 and List2 if

• attributes ATTR1 in List1 and ATTR2 in List2 differ

in their attribute values ATTR V AL.

• attribute ATTR is a member of List1, but not of List2.

Algorithm 1 detects conflicts by checking for all at-

tributes ATTRs from the Cattr list of event E pub,
if the Cattr list satisfies all attributes of an existing

rule(E,P list, Attr list) in the CAM database:

1) Conflicts at the same level (E = E pub): The

Cattr list has to match all attributes and attribute-

values from the Attr list of event E pub.
2) Conflict upwards (E = E pubup): The Cattr list

has to satisfy all attributes and attribute-values from the

Attr lists of each ’upwards-event’ E pubup in the path

from E to the root event in the event types tree. To

satisfy an attribute means that all ATTRs and their

ATTR V ALs from the Attr lists of E pubup have

to be members of Cattr list of event E pub as well.

3) Conflict downwards (E = E pubdown): The

Cattr list has to be constructed in such a manner that

all Attr lists of each ’downwards-event’ E pubdown

in the subtree rooted at Epub in the event types

tree satisfies all attributes ATTRs and attribute-values

ATTR V ALs from the Cattr list of the event E pub.
To satisfy an attribute means that all ATTRs and their

ATTR V ALs from the Attr list of E pubdown have

to be members of Cattr list of event E pub as well.

Algorithm 1 Conflict detection()

{/* Conflict at the same level */}
for all rule(E,P list, Attr list) with E = E pub do
conflicting attributes(Attr list, Cattr list)

end for
{/* Conflict upwards */}
for all rule(E,P list, Attr list) with E = E pubup do
conflicting attributes(Attr list, Cattr list)

end for
{/* Conflict downwards */}
for all rule(E,P list, Attr list) with E = E pubdown

do
conflicting attributes(Cattr list, Attr list)

end for

Example 1 (Publisher-Publisher Conflict): Let us assume

that two publishers P1 and P2 try to add the following five

publishing rules in the subsequent order:

1) rule(A1, P1, {(role, engineer)})
2) rule(A1, P2, {(company,A)})
3) rule(ActivityX, P2, {(company,A)})
4) rule(A12, P2, {(role, worker)})
5) rule(A10, P2, {(role, engineer), (company,A)})
We consider the event types hierarchy as denoted in Fig. 2.

This scenario assumes that conflicting access control rules get

rejected (even if conflict resolution algorithm is used).

The first publishing rule gets accepted without any conflicts

as there are no previously existing rules. When publisher

P2 attempts to enforce the second rule, the CAM detects a

’same level’ conflict, because the attribute list specification

for subscribers from publisher P1 contains (role, engineer),

107

but publisher P2 wants to specify (company, A) as attribute

list for subscribers. The attributes are conflicting and therefore

the rule gets rejected.

On attempting to add event ActivityX from publisher P2,

the CAM detects a downwards conflict, as the publishing rule

w.r.t. its downwards-event A1 does not satisfy the attribute

(company,A). Hence a subscriber would not be able to

subscribe to event type ActivityX anymore (rule rejected).

When publisher P2 attempts to enforce the publishing rule for

event type A12, then the CAM detects an upwards conflict

as the publishing rule for A12 does not hold the attribute

(role, engineer) w.r.t. its upwards-event A1. A subscriber for

event type A12 would no longer be able to subscribe to events

of type A1 anymore (rule rejected).

While enforcing the last publishing rule for event A10 from

publisher P2, the CAM does not detect any conflicts. A10
satisfies the attribute (role, engineer) w.r.t. its upwards-event

A1, and in addition enforces the attribute (company,A) which

is not in conflict to any other attribute. �

C. Publisher-Subscriber Conflicts

A publisher-subscriber conflict occurs if a publisher de-

nies a subscriber from receiving its events or none of the

publisher profiles match with the preferred publisher pro-

file as preferred by the subscriber. Publisher-subscriber con-

flicts are detected using the allow subscription() algorithm.

The algorithm allow subscription(E,P, S) checks whether

a subscriber S is allowed to subscribe to event E of pub-

lisher P based on their profile attributes, or vice versa.

The subscriber sends its request to the CAM, which then

invokes the function allow subscription(). The algorithms

not given here due to lack of space can be found in

the full version: https://sites.google.com/site/debmalyabiswas/

research/ConDec HASE FV.pdf.

IV. CONFLICT RESOLUTION

Conflict resolution in an automated fashion is a non-trivial

task. In most scenarios there is a need for manual input from

an administrator to achieve the desired behavior of the system.

Nevertheless, we try to describe a fully automated solution,

which may be feasible in certain scenarios.

A. Publisher-Publisher Conflicts Resolution

Given a conflict, the conflicting rules (including the can-

didate rule) are analyzed to determine an acceptable rule,

for instance by adding or removing conflicting attributes. We

consider three different resolution strategies:

• Add attributes: fncresolve = fnccommon∧fncconflict1∧
fncconflict2 ∧ ... ∧ fncconflictn , where fnccommon is

the non-conflicting part and fncconflictn refers to the

conflicting parts of different publishers. This resolution

strategy adds restrictions to the commonly agreed on

access control rule. This solution clearly leads to the

candidate rule becoming more restrictive.

• Delete attributes: fncresolve = fnccommon. This ap-

proach removes the conflicting attributes when a conflict

occurs. Note that this strategy leads to the candidate rule

becoming more relaxed than initially intended.

• Distributed resolution: If there is a conflicting fncpi , then

perform a poll among all Pi for ek and fncresolve =
fnccommon ∧ fncpoll. A possible strategy here is to ad-

d/delete attributes as decided by the majority of involved

parties in the poll.

1) Add Attributes: The ‘add attributes’ resolution strategy

is given in Algorithm 2. If a downwards conflict is detected,

we have to exchange the whole subtree of event type E which

is implemented in a recursive fashion in Algorithm 3. If there

is any conflict in the subtree w.r.t. the new attribute, resolution

via ‘add attributes’ is not feasible and the candidate rule will

again get rejected.

Algorithm 2 add attributes()

for all Conflicting attr do
if upwards conflict == TRUE then

add conflicting attribute()
if conflict downwards == TRUE then

exchange attributes(E, conflicting attr)
end if

end if
end for

Algorithm 3 exchange attributes()

if conflict at the same level == TRUE then
if conflict solvable == TRUE then

for all E and Edown do
exchange attributes(Edown, conflicting attr)

end for
add conflicting attribute()
return TRUE

else
return FAIL

end if
end if

Example 2 (Conflict resolution - Add attributes): We con-

sider a CAM database consisting of the following rules:

r u l e (A c t i v i t y X , P1 , { (company ,A)})
r u l e (A1 , P2 , (r o l e , e n g i n e e r) , (company ,A))
r u l e (A12 , P4 , { (r o l e , e n g i n e e r) , (company ,A)})

Publisher P2 then requests the rule

requested rule(A1, P3, (machine,M))

This leads to an upwards conflict w.r.t. (company,A)
of ActivityX , and a conflict at the same level w.r.t.

(role, engineer) and (machine,M) of event A1. In addition,

it implies a downwards conflict w.r.t. (machine,M) of event

A12. The conflict can be resolved by adding (machine,M)
to the rule for event types A1 and A12.

�

108

Algorithm 4 delete attributes()

if conflict detection == FALSE then
updated rule = delete attribute from rule()
for all Edown do
delete attribute(Edown, (Attr, Attr V al))

end for
return updated rule

end if

2) Delete Attributes: The ‘delete attributes’ strategy is

given in Algorithm 4.

We suffice to say that the third strategy can be implemented

by extending the above with a distributed agreement protocol.

B. Publisher-Subscriber Conflicts Resolution

Publisher-Subscriber conflicts imply that there is a mismatch

between publisher and subscriber preferences. This essentially

is a matchmaking problem and approaches to resolve such

conflicts are out of the scope of this work.

V. LIFECYCLE MANAGEMENT

In this section, we present our lifecycle management algo-

rithms. The intuition behind our lifecycle management frame-

work is to maintain a history of access control rule updates

including rejections. When publishers tag an access control

rule as invalid, e.g. when a rule has outlived its purpose, the

CAM can either rollback to a previously modified accepted

database state or incorporate previously rejected rules which

now may become valid.

A. Maintain Access Control Rules History

For recording the history of our publish/subscribe system

rule updates we need to store two types of data. As we

are interested in the ‘most recent’ (other heuristics can be

accommodated analogously) rejected/modified access control

rule for life cycle management, we maintain our log in the

form of a stack. We record the following history elements:

• Rejected Access Control Rules: Every time a publisher

tries to enforce its referenced access control policy w.r.t.

event E, we record it as follows:

log(rejected rule(E,P,Requested attr list))

• Modified Accepted Access Control Rules: When an

inquiry for adding an access control rule was successful,

we store it as follows:

log(modified rule(E,P list, Attr list))

B. Remove Publishing Rule

We next give the algorithm to handle removal of a rule from

the CAM database, as a result of the rule becoming invalid or

the publisher/subscriber who had originally specified the rule

going offline. As mentioned earlier, we have two options w.r.t.

adapting the existing CAM database when a rule is removed:

• Rollback to a rule from the log: The preferred option

is to take rules from the log and rollback to either a

Algorithm 5 removing publishing rule()

{/* Rollback to a rule from the log */}
Candidate set = rules for reactivation from log()
for all Candidates ∈ Candiate set do

if conflict detection() == FALSE then
delete current rule()
add candidate to cam()
clear history()
return rule

end if
end for
{/* Delete outdated attributes */}
for all (Attr, Attr V al) ∈ Attr list to remove do
delete attributes(E, (Attr, Attr V al))

end for
{/* Add previously rejected attributes */}
for all (Attr, Attr V al) ∈ rejected attr list log() do
add attributes(E, (Attr, Attr V al))

end for
update accepted access control rule log()
return rule

previously accepted or rejected rule which can become

valid now. There are clearly many options w.r.t. which

access control rule to consider for reactivation, e.g. the

the most recently rejected rule, We need to ensure that

any such rule selected for reactivation is not in conflict

with the current CAM database (after removal of the rule

in question). So we have to again check for conflicts. If

no conflicts exist, the candidate rule can be added to the

CAM database. Else we try with the next most suitable

rule, and so no. If all candidate rules are conflicting, we

proceed with the alternate strategy ‘modify current rules’.

• Modify current rules: Here we take the current rule and

modify it in such a manner that it is no longer conflicting

with the current rule set. To achieve this, we first delete all

attributes from the lists Attr list to delete, and then try

to add previously rejected attribute requests which may

have a chance of becoming valid now. Remove outdated
attributes (Algorithm 4): If a publisher invalidates his

rule, his restricted attributes have to be deleted from the

common rule. But this is only allowed if there is no

conflict w.r.t. restricted attributes from other publishers

specifying access control rules for the same or hierar-

chically related event types. Add previously rejected
attributes (Algorithm 2): When an attribute becomes

invalid, previously rejected attributes may become valid

now. Note that adding previously rejected attributes is not

required for consistency, but is a desirable feature in that

more requests can be accommodated.

Example 3 (Rollback to a rule from the log): We consider

the event types hierarchy in Fig. 2, and the following log:

r u l e (A1 , [P1 , P2] , { (company ,A) , (r o l e , e n g i n e e r)})
l o g (m o d i f i e d r u l e (A1 , P2 , { (company ,A) }))
l o g (m o d i f i e d r u l e (A1 , P1 , { (r o l e , e n g i n e e r) }))

109

l o g (r e j e c t e d r u l e (A1 , P2 , { (r o l e , worker) }))
r u l e (A1 , [P1] ,{ (r o l e , e n g i n e e r)})
r u l e (A12 , [P3] ,{ (r o l e , e n g i n e e r) , (company ,A)})

Now let us assume that publisher P2 invalidates his rule

w.r.t. A1. The CAM then performs a rollback to

modified rule(A1, P1, {(role, engineer)})
which is not in conflict with publisher P3’s rule w.r.t. A12.

If publisher P1’s rule further becomes invalid, the CAM

performs a rollback to:

modified rule(A1, P2, {(company,A)})
which is again not in conflict with the related rule of publisher

P3 w.r.t. A12. Note that it is not possible to perform a rollback

to the rejected rule specifying the attribute (role, worker)
because this would lead to a downwards conflict w.r.t. A12.

�

VI. EXPERIMENTAL EVALUATION

For our reference implementation, we chose Prolog as the

programming language. Prolog supports relations which are

represented by facts and rules. Facts and rules are stored in an

internal knowledge database. Users can run queries over these

relations and the Prolog interpreter evaluates them to show

results that satisfy the given goal.

In our system, the access control policies that get accepted

are maintained as facts in the Prolog database. The attribute

based profiles of publishers and subscribers are also modeled

as facts in the Prolog database. An access control decision is

performed as a query to the Prolog interpreter.

We used SWI-Prolog version 5.10.1 as our Prolog inter-

preter which is distributed under LGPL. SWI-Prolog supports

an additional package for unit testing that we used for our

test cases. The entry points for every unit test are defined by

rules using the head test(Test name). Note that a test which

is supposed to fail is denoted with \+ which is the Prolog

symbol for ‘NOT’. All tests were performed on a computer

with an Intel Pentium Mobile 2 GHz and 1024 MB RAM

running Ubuntu 10.04 as operating system.

The tests were performed in a specific order as some cases

require specific events to have already occurred in the past.

We give a sample scenario below illustrating the tool output.

We first add a rule specifying the attribute (role,manager)
for event a1 from publisher p1 to the empty CAM database.

t e s t (a d d p u b l i s h i n g r u l e 1):−
a d d p u b l i s h i n g r u l e (a1 , p1 , [(r o l e , manager)]) .

Output:
Rule s u c c e s s f u l l y added .

We then test for conflicts at the same level.

t e s t (a d d p u b l i s h i n g r u l e 2):−
\+ a d d p u b l i s h i n g r u l e (a1 , p2 , [(company , a)]) .

Output:
F a i l e d t o add r u l e : C o n f l i c t a t t h e same l e v e l !
Mis s ing a t t r i b u t e (s) : (r o l e , manager)

With conflict resolution and lifecycle management enabled:

Output:
F a i l e d t o add r u l e : C o n f l i c t a t t h e same l e v e l !
Mis s ing a t t r i b u t e (s) : (r o l e , manager)
C o n f l i c t r e s o l u t i o n s t a r t e d .
Rule s u c c e s s f u l l y r e s o l v e d :
r u l e (a1 , [p1 , p2] , [(company , a) , (r o l e , manager)])
and
r u l e (a1 , p1 , [(r o l e , manager)]) added t o h i s t o r y l o g .

Now we consider a (future) change action where an existing

rule is declared as invalid.

t e s t (d e l e t e r u l e 1):−
d e l e t e r u l e (a1 , p2 , [(company , a)]) .

Output:
R o l l b a c k t o r u l e : r u l e (a1 , p1 , [(r o l e , manager)])
D e l e t e from h i s t o r y l o g :
r u l e (a1 , p1 , [(r o l e , manager)])
Add t o h i s t o r y l o g :
r u l e (a1 , [p1 , p2] , [(company , a) , (r o l e , manager)])

We now give sample run times for our algorithms to

illustrate their scalability. We have developed an automated

test case generator which outputs scenarios based on 3 input

parameters: (i) number of rules r, (ii) number of publishers

p = |P|, and (iii) number of event types (nodes in the event

tree) n = |E|. The generated event tree is balanced, such that

n = 2l − 1 where l is the number of levels in the event tree.

Fig. 3 shows the execution time as the number of rules

increases for n = 105 and p = 100. The increase in execution

time is (approx.) linear and the time 7830ms to evaluate

10000 rules clearly shows the scalability of our algorithms.

Fig. 4 shows the execution time as the number of publishers

increases for n = 105 and r = 1000. It can be seen that

increasing the number of publishers does not really affect the

execution time. This is because publishers act as peers in the

current setup with equal capabilities. The number of publishers

p would become relevant if we considered different publishers

having different CPU/communication overheads. Fig. 5 shows

the execution time as the size of the event tree increases for

p = 105 and r = 100. The increase in execution time is

logarithmic, which should be acceptable in practice as we do

not expect the number of event types to be too large even for

large scale real-life scenarios.

Fig. 3. Ext. time vs. Rules Fig. 4. Ext. time vs. Pubs

VII. RELATED WORK

In contrast to current research in access control models

for publish/subscribe systems [2], [3], [4], [5], we provided

110

Fig. 5. Ext. time vs. Size of the event tree

a comprehensive framework to support conflict detection,

resolution and lifecycle management.

We adapted an ABAC scheme [6] for specifying access

control rules in publish/subscribe systems. The attribute based

authorization framework proposed in [7] offers dynamic con-

flict resolution. Depending on the attribute in question, the

framework chooses a feasible policy combining algorithm. For

instance, if the attribute ‘emergency’ in a hospital environ-

ment applies, users will gain additional access control rights

they normally do not get. This is a practical approach, but

problems will arise in more complex scenarios when more

than one attribute applies. A related approach here is also the

work on Attribute Based Encryption (ABE) [8]. ABE is a

cryptographic scheme for decentralized access control where

attributes/profiles of parties allowed to decrypt a ciphertext,

are embedded in the ciphertext itself. Given this, while the

part which deals with determining if a party can decrypt

a ciphertext is analogous to our conflict detection aspect,

resolution and lifecycle management are clearly missing here.

We made use of hierarchical relationships prevalent among

event types to optimize our algorithms. [9] gives a graph-based

conceptual model to capture such hierarchical relationships in

a multi-provider scenario. Policy decomposition for collabo-

rative access control is considered in [10]. They propose to

decompose a global access control policy rule into local rules

and then distribute it to each collaborating party. Here we take

the reverse approach of allowing each party to first come up

with their own preferred local rules, and then compose them

to a globally consistent non-conflicting set of rules.

Conflict detection using description logic based methods

is proposed in [11], [12], [13]. They first show how to

model access control policies in description logic, followed by

algorithms for policy comparison, verification and querying.

However none of them deal with conflict resolution or lifecycle

management. For designing conflict resolution algorithms, one

of our strategies is influenced by the notion of computing

rule similarities [14] between XACML based access control

policies. Conflict resolution is also discussed in [15]. They

propose to either resolve conflicts by applying only permit-

overrides (deny-overrides) or by using an algorithm based on

priority for certain access control rules, however the actual

implementation details to achieve this in practice are missing.

VIII. CONCLUSIONS AND FUTURE WORK

We considered the problem of access control in large-scale

publish subscribe systems, deployed across multiple organiza-

tions. In such a scenario, the publishers and subscribers prefer

to autonomously specify and enforce their access control

policies leading to conflicts. We developed conflict detection

and resolution algorithms for both publisher-publisher and

publisher-subscriber conflicts ensuring a mutually consistent

set of non-conflicting rules. We further showed how the

hierarchical relationships among event types can not only be

accommodated, but also used to increase the efficiency of

our access control algorithms. We next provided algorithms

for automated lifecycle management that allow rollback to a

previously consistent set of rules. We showed the scalability of

our algorithms by evaluation on our reference implementation.

In future, we would like to be able to accommodate changes

in the hierarchical event model itself. It has to be seen how

deleting/adding event types affects the conflict detection and

lifecycle management algorithms.

REFERENCES

[1] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The Many faces
of Publish/Subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114–
131, 2003.

[2] C. Wang, A. Carzaniga, D. Evans, and A. Wolf, “Security Issues and
Requirements for Internet-scale Publish-subscribe Systems,” in Hawaii
International Conference on System Sciences, 2002, pp. 3940–3947.

[3] A. Belokosztolszki, D. Eyers, P. Pietzuch, J. Bacon, and K. Moody,
“Role-based Access Control for Publish/Subscribe Middleware Architec-
tures,” in International Workshop on Distributed Event-based Systems,
2003, pp. 1–8.

[4] Y. Zhao and D. Sturman, “Dynamic Access Control in a Content-based
Publish/Subscribe System with Delivery Guarantees,” in International
Conference on Distributed Computing Systems, 2006.

[5] J. Singh, L. Vargas, J. Bacon, and K. Moody, “Policy-based Information
Sharing in Publish/Subscribe Middleware,” in Workshop on Policies for
Distributed Systems and Networks, 2008, pp. 137–144.

[6] E. Yuan and J. Tong, “Attributed based Access Control (ABAC) for Web
Services,” in IEEE International Conference on Web Services, 2005, pp.
561–569.

[7] A. Mohan and D. Blough, “An Attribute-based Authorization Policy
Framework with Dynamic Conflict resolution,” in Symposium on Identity
and Trust on the Internet, 2010, pp. 37–50.

[8] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in IEEE Symposium on Security and Privacy, 2007,
pp. 321–334.

[9] D. Biswas and K. Vidyasankar, “Formalizing Visibility Characteristics
in Hierarchical Systems,” Data and Knowledge Engineering, vol. 68,
no. 8, pp. 748–774, 2009.

[10] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo, “Policy Decomposition for
Collaborative Access Control,” in ACM Symposium on Access Control
Models and Technologies, 2008, pp. 103–112.

[11] V. Kolovski, J. Hendler, and B. Parsia, “Analyzing Web Access Control
Policies,” in International Conference on World Wide Web, 2007, pp.
677–686.

[12] V. Kolovski, “Formalizing XACML Using Defeasible Description Log-
ics,” University of Maryland, USA, Tech. Rep. TR-233-11, 2006.

[13] D. Dougherty, K. Fisler, and S. Krishnamurthi, “Specifying and Rea-
soning about Dynamic Access-control Policies,” Automated Reasoning,
pp. 632–646, 2006.

[14] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino, “XACML
Policy Integration Algorithms,” ACM Transactions on Information and
System Security, vol. 11, no. 1, pp. 1–29, 2008.

[15] W. Yu and E. Nayak, “An Algorithmic Approach to Authorization
Rules Conflict Resolution in Software Security,” in IEEE International
Computer Software and Applications Conference, 2008, pp. 32–35.

111

