
Interactive Access Rule Learning: Generating Adapted Access Rule Sets

Matthias Beckerle, Leonardo A. Martucci, Sebastian Ries
Technische Universitt Darmstadt

Darmstadt, Germany
{beckerle, leonardo, ries}@tk.informatik.tu-darmstadt.de

Abstract—This paper tackles the problem of usability and
security in access control mechanisms. A theoretical solution for
this problem is presented using the combination of automatic
rule learning and user interaction. The result is the interactive
rule learning approach. Interactive rule learning is designed
to complete attribute-based access control to generate concise
rule sets even by non-expert end-users. The resulting approach
leads to adaptive access control rule sets that can be used for
smart products.

Keywords-adaptivity; usability; access control; rule learning.

I. INTRODUCTION

Smart products are a new class of devices that bridge
the gap between the real and the virtual world. They pro-
vide a natural and purposeful product–to–human interaction
and context-aware adaptivity. Smart products need to have
knowledge about the application and environment that they
are immersed to fulfill their tasks. Thus, they also need
access to private / confidential information, such as users’
preferences. Moreover, smart products can exchange pri-
vate / confidential information among each other to complete
collaborative tasks that require information from multiple
sources, such as the booking of flight tickets and hotels.
Smart products can be part of highly dynamic environments,
where devices can appear and disappear in non-predictable
ways.

However, the amount of possible security breaches is
directly proportional to the sheer number and variety of
smart products. Equally, the variety of devices with different
user interfaces also increase the complexity of administrative
tasks for the end-users. Therefore, one of the main chal-
lenges of IT-security regarding smart products is the design
of mechanisms that combine a customizable level of security
and usability [1], [2].

Current IT-security solutions tend to overstrain non-expert
users. In home and enterprise environments, users are fre-
quently forced to choose passwords for local and remote
authentication and also define rules for access control, e.g.,
file sharing access rights. However, the imposition of such
security features often lead to insecure or unpractical mea-
sures, such as written passwords and access control rules that
are often too general. In addition, users tend to deactivate
security mechanisms or render them useless by: not chang-
ing default passwords or leaving them blank; granting access
to everyone; or turning off basic security mechanisms. This

behavior is very common nowadays, especially regarding
login passwords, browser cookies, virus scanners, and file
access controls.

The administration of secure features in computational
systems by non-expert end-users is already a challenge.
Such a fact can be easily shown by the massive number of
computers that are part of bot nets [3], which is, in most of
cases, caused by inability of such users to keep their systems
up-to-date or to change default settings. Smart products
add more complexity to such scenarios by increasing the
administrative burden to the end-users.

In this paper, the usability aspects of security solutions are
analyzed and a mechanism that allows more user-friendly
access control rules generation is proposed. The initial
analysis is used to identify usability gaps in basic security
mechanisms that can be applied for smart products. Such an
analysis shows that there are already sufficient solutions that
can applied for confidentiality, integrity, and authentication
services, but no appropriate access control solutions exist
nowadays.

This paper is organized as follows. In Section II, some
key terms are defined. Section III brief outlines the state-
of-the-art solutions for maintaining confidentiality, integrity,
authentication, and authorization in highly dynamic envi-
ronments. In particular, authorization and access control
mechanisms are analyzed in Section IV, and security and
usability requirements for access control rule set are intro-
duced in Section V. In Section VI, we present a solution
that helps users to generate proper access control rule sets
using a combination of automated rule learning and user
interaction. The related work is shown in Section VII. A
use case scenario that illustrates our proposal is described in
Section VIII, and the final remarks are presented in Section
IX.

II. DEFINITION OF SECURITY TERMS

In this section, we define the some key security terms that
are going to be use throughout this paper: reliability, usabil-
ity, confidentiality, integrity, authenticity and authorization.

• Reliability: in this paper we define reliable security
as a set of security mechanisms that is able to fulfill
the security expectations of an end-user regarding their
security requirements.



UsabilityReliability

Reliable and

usable security

Security

usable security

Figure 1. Dependencies for reliable and usable security

• Usability: in this paper usability means that security
mechanisms demand minimum user interference to be
deployed. A smart product should stay as usable as it
would be without security mechanisms. Thus, the in-
troduction of security should be preferably automated.

• Confidentiality: means that the assets of a computing
system are accessible only by authorized parties. Con-
fidentiality is usually implemented using cryptographic
algorithms.

• Integrity: means that assets can be modified only by
authorized parties or only in authorized ways. Integrity
is mostly implemented using one-way functions in
combination with cryptographic algorithms.

• Authenticity: means that an entity can prove who or
what they claim to be. Authentication services are
usually implemented by a proof of knowledge, a proof
of ownership, or a proof of biometric trait.

• Authorization: means that policies are used and en-
forced to specify access rights. Authorization is im-
plemented through access rules that are used by access
control mechanisms to determine if an entity is allowed
to access information or not.

The aforementioned terms reliability and usability are
often seen as contradicting goals, especially regarding access
control rules. Such contradiction is usually resulting from the
huge amount of rules that are required to secure a system,
which makes them unintelligible for end-users. Usability in
most cases is simply neglected, what can result in insecure
systems in the long-term since users tend to turn such
security features off or use them in improper ways, as
mentioned in Section I. These dependencies are shown in
Figure 1. In the remainder of this paper the term CIA is used
as an abbreviation for the security services confidentiality,
integrity, and authentication1.

III. CIA AND SMART PRODUCTS

To achieve reliable and usable security, an analysis of
existing security services in the context of smart products
and highly dynamic environments is needed first. This

1In this paper CIA deviates from the more common usage of the term,
which refers to confidentiality, integrity, and availability.

section presents such an analysis. In such a context, we
show that confidentiality, integrity and authenticity can be
automated quite well, but authorization cannot. Confidential-
ity is presented in Section III-A, integrity in Section III-B,
authenticity in Section III-C, and authorization in Section
III-D.

A. Confidentiality

For a reliable secure system it is important to secure not
only the access to the data, but also to secure the data itself,
whereas stored or in transit. Confidentiality can be achieved
using encryption to protect data.

There are symmetric, such as AES, and asymmetric
encryption mechanisms like RSA . Symmetric key encryp-
tion demand the distribution of cryptographic keys among
participating devices. Asymmetric key encryption performs,
in general, worse than symmetric key encryption. Hence,
large chunks of data are rarely encrypted using asymmetric
keys, but only selected data, such as symmetric keys. In
smart products, the process of symmetric key distribution is
a potential challenge because if a unique key is demanded
for every pair of communicating entities, the number of
required keys equals

(
n
2

)
, where n is the total number of

communicating devices. Nonetheless, it is feasible to embed
public-private key pairs into them. Such an approach is
sufficient in principle and implements confidentiality into
high dynamic environments using existing and standard
cryptographic systems.

B. Integrity

Integrity has to assure that any unauthorized change of
data is recognized. Data integrity is usually accomplished
using one-way hash functions and public key encryption or
with just symmetric keys. Message Authentication Codes
(MAC) [4] are implemented using symmetric keys and
digital signatures with public-private key pairs. Since such
cryptographic tools are expected to be embedded into smart
products (as seen in Section III-A), there are going to
be enough cryptographic tools available for securing data
integrity.

C. Authenticity

Authentication is required to obtain a proof of correctness
over an identity claim. In smart product scenarios there
are basically three types of authentication: device–to–device,
device–to–user, and user–to–user. There are sufficient mech-
anisms based on digital certificates that can carry out device–
to–device authentication automatically. Device–to–user and
user–to–user authentication can also be realized using proofs
of knowledge, biometric traits or digital tokens together with
public-key encryption. In such a case, after users authenti-
cate themselves to smart products, such devices might be
used to automatize other authentication procedures between
users and other devices.



D. Authorization

Authorization is needed to specify access rights and
enforce them. It is implemented through access rules, and
the collection of such rules is referred to as a rule set. There
are mechanisms that allows fully automated generation of
rule sets for smart products. Such approaches, however,
disregard adaptivity to the end-user. The general problem
is resulting from the diversity of user preferences, so more
information regarding the users is required. Authorization
problems regarding adaptivity and user in smart products are
discussed in Section IV, where the existing access control
models are outlined and evaluated regarding their suitability
to smart product scenarios.

IV. ACCESS CONTROL

This section provides an overview of different access
control models and provides an evaluation of such models
regarding their suitability to smart product scenarios. In
this section, we describe the following access control (AC)
models: Blacklists, Mandatory AC (MAC), Discretionary
AC (DAC), Role-Based AC (RBAC), and Attribute-Based
AC (ABAC). This section concludes with a set of recom-
mendations for an AC models suitable for smart product
scenarios. It concludes that ABAC models together with
Blacklists is the most suitable solution for such scenarios.

The role of AC mechanisms, which are implemented after
AC models, is to ensure that only authorized entities are able
to access the information and functions of a computer system
(principle of authorization) [5].

A. Blacklist

A Blacklist AC is a very simple AC that blocks all
requests from entities that are included in a Blacklist. It
is used to thwart known or recurrent attackers. Blacklists
have to be configured manually or, sometimes, they can be
updated automatically according to to predefined rules, e.g.,
multiple unauthorized requests, or a series of failed authen-
tication procedures. Blacklists usually outperform other AC
mechanisms because their complexity class is lower than
those, and its performance can be O(1) with a very small
constant factor for the blacklist lookup. Blacklists are a
rather simple to use AC, but also rather inflexible, since
there no conditional access policies can be defined.

B. MAC / DAC

MAC and DAC are two early AC models [6]. MAC and
DAC can be seen as complementary approaches, but both
link access rights directly to the related entities.

In MAC, a central administrator controls the access rights
of each entity of the system. No other entity is able to
change the access rights. In such a context, MultiLevel
Security (MLS) (such as Bell-La Padula [7]) is an often used
approach. In MLS, each entity or object of the system has a
security level given by a central authority. Each entity is only

able to access other entities or objects that have the same or a
lower security levels. Mandatory Integrity Control (MIC) is
a similar approach and is used in Microsoft Windows Vista
(and later). Processes can only write or delete other objects
with an security level lower or equal to their own.

DAC differs from these approaches as each entity can
hand its rights over to other entities. That way, users are able
to share objects among each other. DAC is used in UNIX
and Windows-based systems for sharing data and resources.

C. RBAC

RBAC [8] introduced a new way by setting roles between
the entity and the related rights. That way, each entity can
have several roles and each role can be held by multiple
entities. For administrative purposes, roles are established
first, and afterwards they are assigned to entities. Since
roles usually rarely change, this reduces the complexity for
administrating RBAC significantly after the first setup. If
only those entities change that inherit a role, this can be
simply addressed by adding or deleting entities (in form of
the name or a unique identifier) that are associated with the
regarding role. Roles can change dynamically and in that
way the user might gain and lose roles automatically when
doing special tasks.

D. ABAC

One of the newest models is ABAC [9]. ABAC uses
attributes instead of roles to link rights to entities. This
procedure allows the use of dynamic conditions encoded in
attributes, such as the location of an entity, to decide whether
to grant access or not. Since the role as well as the security
level of an entity can be seen as an attribute, it is possible to
integrate concepts known from other AC models like DAC
or RBAC.

E. Hybrid approaches

In reality, the distinction between different AC models
is not as strict as shown in this section. There are hybrid
models like the Location-Aware Role-Based Access Control
(LRBAC) [10], which allows the use of a geographical
location as a “role”. It is often possible to derive a less
complex AC model from a more complex one, e.g., it is
possible to create an MAC mechanism from an ABAC
model.

F. Access Control for Smart Products

Smart products are user adaptive devices which require
AC mechanisms with maximum flexibility since they are
related to the everyday life of a heterogeneous set of end-
users. Smart products need to maintain user profiles that
have attributes and values about users, such as preferences
to fulfill their tasks. ABAC models are an evident candidate
for building up AC mechanisms for smart products because
they provide maximum flexibility in comparison to the
aforementioned AC models.



Effort per rule

Expert users

Number 

of Rules

MAC / DAC

RBAC
ABAC

ABAC + IRL

Non-expert users

Advanced users

Figure 2. Theoretical comparison of different AC models.

ABAC models are, however, more complex than the other
models listed in this section. Such complexity results in a
larger consumption of computational resources than simpler
approaches. Thus, to reduce to costs of AC operations a
Blacklist AC mechanism can be executed before the ABAC
mechanism. The Blacklist filters out known misbehaving en-
tities, and their requests do not reach the ABAC mechanism.
For instance, after an entity, that was not blacklisted at first,
has multiple identical requests denied by the ABAC mech-
anism, such an entity can be temporarily or permanently
added to the blacklist.

AC mechanisms like ABAC are dynamic and flexible.
However, they are also hard to configure in the right way.
While MAC and DAC have only one way to link access
rights to the user, RBAC and, especially, ABAC allows for
different ways of connecting access rights to entities through
indirect mapping. This flexibility enables very compact and
meaningful policy sets. However, if not correctly used, it can
lead to an heterogeneous and incomprehensible set of rules.
This problem is very likely to occur in case of inexperienced
users. This is an important challenge that is addressed with
Interactive Rule Learning in Section VI.

The relation between flexibility of an AC mechanisms and
the usability is shown in Figure 2. This figure shows that
MAC / DAC can be used by non-expert users but the number
of needed rules for non-trivial scenarios is extremely high.
The figure also illustrates that RBAC and ABAC can have
very short rule sets, however, only expert users might be able
to do so (since it is difficult to manually define a minimal
rule set for a complex scenario). If more rules are used in
RBAC and ABAC, it is possible to emulate MAC / DAC
mechanisms with the difference that always a role or an
attribute is in between entities and their related access rights.
Finally, the figure shows that ABAC plus Interactive Rule
Learning can be used to create reduced rule sets even by
non-expert users.

After defining a suitable AC model for smart products it is
still fundamental to define how the rules for such AC model
are generated. Such rule generation should consider a set of
requirements that are discussed in the next section.

V. REQUIREMENTS FOR AC RULE SETS

In this section, we define the requirements for AC rule
sets for smart product scenarios taking into account both
security and usability constraints. Not all rules presented
in this section are orthogonal, thus conflicts do exist. Such
conflicts are detailed and explained in the end of this section.

A. Security Constraints

The security constraints for building up AC rule sets are
regarding specific or permissive rules and also the meaning
of such rules. Each requirement is assigned a letter S
followed by a number.

• S1: specific (permissive) rules. Access rules have to be
specific enough to leave no opening for intruders. Rules
like “everyone is allowed to do everything” render AC
mechanisms useless in practice.

• S2: meaningful rules. Access rules have to reflect the
expectations of the smart product owner. Rules like
“every employee of the university is allowed to use the
printer” have a better semantic meaning than a similar
rule stating that “every one with glasses is allowed
to use the printer”, even if every employee of the
university wears glasses.

B. Usability Constraints

The usability constraints for building up AC rule sets are
regarding the existence of redundant rules, their consistency
and understandability, and also related to the total number
of rules. Each usability requirement is assigned a letter U
followed by a number.

• U1: no redundant rules. Rules or set of rules that
are fully covered by other rules or set of rules can
be deleted without changing the behavior of the AC
mechanism. Thus, if a rule set A is a subset of a rule
set B, then rule set A can be deleted. Redundant rules
only increases the complexity of a rule set without
adding any security features and make such sets more
confusing for the end user.

• U2: consistent rules. Consistent rules mean that two
or more different rules must not be contradictory.
Contradictory rules could lead to unpredictable access
decisions or worsen the usability by unnecessarily
increasing the complexity of the rule set.

• U3: general, understandable and manageable rule sets.
AC rules need to be general enough for users to
understand and manage.

• U4: minimum number of rules. The number of rules
that describes the scenario should be minimal to make
the rule set understandable and manageable.

The use of general rules in requirement U3 contradicts
the requirement S1 regarding specific rules. Thus, the best
compromise between specific and general rules need to be
reached. The best compromise is, however, connected to the
users preferences and it is, therefore, individual.



Rule U2 is not only a usability requirement, since it
can also impact the security level obtained by the AC
mechanism. An inconsistent rule set can lead to a non-
expected behavior that can compromise the security of the
smart product.

In the next section we develop a rule generation procedure
that takes the aforementioned requirements into account.
Such procedure combines automatic rule generation with
user interaction.

VI. RULE GENERATION

Nowadays, the common procedure for rule generation is to
do it manually. Therefore, the requirements listed in Section
V need to be considered by the owner of the smart product.
The manually generation of rules by inexperienced users
will likely result in misconfigured access rule sets (or the
manual deactivation of security mechanisms), which even-
tually end up into security vulnerabilities. Therefore, the rule
generation process should be automated as much as possible.
Learning algorithms, from the Artificial Intelligence research
field, are able to accomplish this goal [11].

A. Automatic Rule Learning

Extracting knowledge out of data by using a rule-learning
algorithm is a well-known topic. However, for defining
good access rules, a fully automated rule generation is
unfortunately not worth most of the time. It is very difficult
to determine automatically what kind of information needs
to be protected. The whereabouts of a person, for instance.
Taxi drivers may have their geographical position public
available, but for lawyers or doctors on their way to clients or
patients must keep their location information strictly private.

It could be possible to decide which information should
be public and private by analyzing the user profile. Thus,
automatic rule set generation is possible, but it is expected
that errors would also be a commonplace. However, if
related information for automatic rule generation is missing,
automatic processes are not possible. Hence, the smart
product owners have to decide by their own regarding the
access rules.

Therefore, a proper solution is to use automatic rule
generation to create an initial rule set that is later presented
to the user. Such a solution is presented in Section VI-B.

B. Interactive Rule Learning

Learning algorithms can generate a set of rule sets and
present them to users that decide which specific rule set
suits best to their context. A rule learner can be used to
analyze the set of access rules of a smart product regarding
the actual behavior of entities [12].

Such an analysis disclose whether rules are shadowed,
redundant, or correlative, and which exceptions exist fol-
lowing the definition and classification presented in [13].
Furthermore, in interaction with users, the number of rules

usability

Security Authorization
(attribute based access control, anomaly based intrusion detection)

Interactive Rule Learning
(machine rule learning, user interaction)

Level of

automation

reliability

Confidentiality
(encryption)

Integrity
(MAC, digital signatures)

Authentication
(challenge-response)

(attribute based access control, anomaly based intrusion detection) automation

Figure 3. Reliable and Usable CIA + Authorization

is minimized by analysing, pruning, and rebuilding the set
of access rules. This procedure is called Interactive Rule
Learning (IRL) [14].

Combined with the ABAC, the IRL helps the user to
build a secure and usable set of access rules. The expected
outcome of ABAC+IRL is shown in Figure 3. This concept
represents an important step towards usable security.

An automated rule learning algorithm can fulfill the
following requirements: S1, U1, U2 and U4. Users have to
verify the compliance of requirement S2, since it depends
on the context and also on the smart product owner prefer-
ences. To satisfy requirement U3, regarding general rules,
interaction between the smart product owner and the rule
leaner is required.

VII. RELATED WORK

Over the years, a variety of learning algorithms have
been developed that try to imitate natural learning or use
a more technical approach as a starting point. Some ap-
proaches try to reproduce the functioning of a brain at
the level of neurons [15], [16]. Other mechanisms, such
as support vector machines, are based on a more abstract
mathematical concept by finding an optimal border between
positive and negative examples (like access and deny for an
access request) by maximizing the distance between them
[17]. Existing algorithms further differ with respect to their
applicability, speed, and accuracy [18], [19].

Rule learners use a very intuitive approach in relation to
the aforementioned algorithms. They try to find causalities
in recorded databases and express them with simple rules.
For example, in a database that describes the attributes of
different animals like ravens, sparrows and pigs such a rule
could be as follows: “If an animal can fly and has feathers,
it is a bird”. This approach has the particular advantage of
being relatively easy to understand for humans as opposed to
the classification of a support vector machine, for instance.
This is both a psychological and a practical advantage. From
a psychological perspective people tend to accept something
more likely if they are able to understand it. From a practical
point of view, potential errors can be more easily detected
and extended [14].



VIII. USE CASE SCENARIO

In our use case scenario we consider a family of four.
Alice (A), Bob (B), and their children Charlie (C), a 17-year
old, and Denise (D), an 8-year old. The set with elements
{A,B,C,D} is the family, and the subset with elements
{A,B} are the parents. In the family’s kitchen there are 3
new smart products: a smart coffee machine (X), a smart
blender (Y), and a smart oven (Z).

We assume that newly bought devices come with a default
set of access rules, which are defined by the smart product
manufacturers. Since the manufactures cannot predict in
which way smart products are going to be used, the factory
settings for the access control rules are basically general.
They follow the usage rules of similar non-smart products,
i.e., everyone that physically interacts with a device is
allowed to use up to its full-functionality. For instance,
everyone locally interacting with the coffee machine is
allowed to brew coffee.

The full control of a smart product is given to the one
who first activates it. A smart product might be remotely
controlled by its users (through smart devices) after it has
been integrated into the home environment. A wants to
configure and generates access rules for the 3 newly bought
smart products (X, Y, Z), so that her family can best profit
from them. Three classes of access rights are preloaded in
smart devices (those classes can later be reconfigured or
changed):

1) Full access: the right to locally or remotely access a
smart product and to manage its access rights.

2) Remote and local access: the right to locally and
remotely access a smart product.

3) Local access: the right to locally access the smart
products.

A wants to grant B with full control over all the smart
products. C shall get access to the full functionality (locally
and remotely), but shall not have administrative rights over
the smart products. D shall not have any access to the
devices, even by local interaction. Since the family often
have guests, A wants them to be able to locally interact with
the smart products, just as in a non-smart kitchen. The initial
manually generated rule set is:
Rule Set 1
1: If (owner) -> full access
2: If (any) -> local access
3: If (A) -> full access
4: If (B) -> full access
5: If (C) -> remote and local access
6: If (D) -> no access to X
7: If (D) -> no access to Y
8: If (A) -> no access to Z
9: If (guest) -> local access

There are a few mistakes in A’s manually generated rule
set. They are:

• The first two rules are residues from the preloaded
factory default rule set. The fact that A ignored them

leads to two implications regarding requirements U1
and U2. Rule 2 is a superset of rule 9, and it also
contradicts rules 6, 7, and 8. Moreover, since there are
redundant rules, their number is surely not minimum,
which contradicts U4.

• Rule 9 is misconfigured since it does not reflect A’s
expectation. Instead of denying D, she denied herself
to access Z. It contradicts requirements S2 and U2.

• The rules were generated taking into account specific
family members instead of more general attributes,
such as age. The use of attributes for generating small
and understandable rule sets is recommended and one
of the reasons why ABAC is better suited for smart
products, as mentioned in Section IV. Therefore, there
is a contradiction with U3.

The smart products analyze the manually generated rule
set taking the usability and security constraints presented in
Section V and produce new rule sets that are free of conflicts.
In our example, the smart products present to the user A two
automatically generated rule set options:

Rule Set 2
1: If (age > 40) -> full access
2: If (family & age > 16) -> remote and local acc
3: If (age > 9) -> local access

and,

Rule Set 3
1: If (parents) -> full access
2: If (family & age > 16) -> remote and local acc
3: If (age > 16) -> local access

It is up to A to decide which rule set suits her needs
the best. Both rule sets look much better and concise than
the manually generated rule set. However, the first rule
of the Rule Set 2 is way too general (an infringement to
requirement S1), since it gives full access rights for everyone
above 40, which would include eventual guests. The last rule
of Rule Set 2 is also not of her likes, since A would not trust
a 9-year old to operate kitchen appliances (but she would
trust a 12-year old). Thus, A picks Rule Set 3, but manually
changes rules 2 and 3 to better fits her expectations. The
modified rule set, Rule Set 4, is:

Rule Set 4
1: If (parents) -> full access
2: If (family & age > 12) -> remote and local acc
3: If (age > 12) -> local access

A comparison between the manually generated Rule Set
1 and the interactive generated Rule Set 4 demonstrates a
great improvement of the latter regarding the usability and
security requirements presented in Section V. Rule Set 4
addresses the security requirements S1 and S2 since the
rules are specific and meaningful. Usability requirements
U1, U2, U3, and U4 are also fulfilled since there are no
redundant rules, and the rules are consistent, understandable,
meaningful, manageable and provide a minimum amount of
rules to express the owner’s security expectations.



Table I
USABILITY OVERVIEW TO CIA AND AUTHORIZATION.

Confidentiality Integrity Authenticity Authorization
Usability Yes, transparent Yes, transparent Yes, transparent Partially,

fully automation not possible
Adequate Method Encryption Digital Signatures Proofs of knowledge, biometric traits

or digital tokens + public-key enc.
ABAC and

Interactive Rule Learning

IX. CONCLUSION

In this paper we showed that access control rule sets
is the most challenging aspect for combining usability and
security in smart product scenarios. Other security services,
such as confidentiality, integrity, and authenticity can be
automated and, therefore, made fully transparent for end-
users. In Table I we summarize the usability aspects and
security mechanisms in regarding to the aforementioned
security services.

Based on analysis of the different AC mechanisms the
combination of a blacklist with an attribute based approach
is proposed to fulfill todays and future needs for adaptive
devices. We listed a series of security and usability re-
quirements for access control rule sets. We showed that the
combination of automated rule learning with user interaction
is able to fulfill such requirements to a secure and usable
system.

Future work is going to exploit how interactive access rule
learning for ABAC can be used to achieve the best results.
Initially, data needs to be collected for the automated rule
generation from two different sources. The first data source
is composed of rules that already pre-loaded or added by
users to smart products. The second source is the actual
behavior of users of smart products. The combined data is
used by the automatic rule learner to define a new set of
rules that are submitted to the user for approval.

In the future we are also going to address the processing
of hierarchical data in automatic rule learning. Rule learning
on hierarchical data is important to allow the users to define
natural access rules. Hierarchical data provides contextual
information. They are commonplace in many aspects of our
daily lives. For instance, business structures are mostly hier-
archical, with directors, managers, and secretaries. Current
automatic rule learners are not able to process hierarchical
data and, therefore, they need to be extended to accept
such data2. A final aspect is the conversion of automated
generated rules to rules that are user-friendly.

ACKNOWLEDGEMENTS

This research paper is part of research conducted by
the EU project SmartProducts, funded as part of the 7th

framework program of the EU (grant no. 231204) and
supported by the Center for Advanced Security Research
Darmstadt (CASED).

2There are indeed already proposals of rule learning on hierarchical
data [20]. However, those are still very limited regarding the use of the
hierarchical structures.

REFERENCES

[1] M. Beckerle, “Towards Smart Security for Smart Products,” in
AmI-Blocks’09: 3rd European Workshop on Smart Products,
2009.

[2] L. Cranor and S. Garfinkel, Security and Usability. O’Reilly
Media, Inc., 2005.

[3] V. Reding, The Future of the Internet - A conference held
under the Czech Presidency of the EU. Belgium: European
Commission - Information Society and Media, 2009, ch. What
policies to make it happen?, pp. 2–5.

[4] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-
hashing for message authentication,” 1997.

[5] F. Stajano, Security for ubiquitous computing. John Wiley
and Sons, 2002.

[6] S. Brand, “DoD 5200.28-STD Department of Defense Trusted
Computer System Evaluation Criteria (Orange Book),” Na-
tional Computer Security Center, 1985.

[7] D. Bell and L. La Padula, “Secure computer system: Unified
exposition and Multics interpretation,” MTR-2997, 1976.

[8] D. Ferraiolo, D. Kuhn, and R. Chandramouli, Role-based
access control. Artech House Publishers, 2003.

[9] E. Yuan and J. Tong, “Attributed based access control (ABAC)
for Web services,” in IEEE International Conference on Web
Services ICWS 2005. Proceedings, 2005.

[10] I. Ray, M. Kumar, and L. Yu, LRBAC: A location-aware role-
based access control model. Springer, 2006.

[11] J. Carbonell, R. Michalski, and T. Mitchell, An overview of
machine learning. Tioga Publishing Company, Palo Alto,
1983.

[12] J. Fuernkranz, “Separate-and-conquer rule learning,” Artificial
Intelligence Review, vol. 13, no. 1, pp. 3–54, 1999.

[13] H. Hamed and E. Al-Shaer, “Taxonomy of conflicts in net-
work security policies,” IEEE Communications Magazine,
vol. 44, no. 3, pp. 134–141, 2006.

[14] M. Beckerle, “Interaktives Regellernen,” Master Thesis, Tech-
nische Universität Darmstadt, 2009.

[15] M. Riedmiller, “Advanced supervised learning in multi-layer
perceptrons-from backpropagation to adaptive learning algo-
rithms,” Computer Standards and Interfaces, vol. 16, pp. 265–
278, 1994.

[16] E. Yair and A. Gersho, “The Boltzmann perceptron network:
A soft classifier,” Neural networks, vol. 3, no. 2, pp. 203–221,
1990.

[17] B. Schoelkopf, C. Burges, and A. Smola, Introduction to
support vector learning. MIT Press Cambridge, MA, USA,
1999.

[18] Y. Jin, “A comprehensive survey of fitness approximation
in evolutionary computation,” Soft Computing-A Fusion of
Foundations, Methodologies and Applications, vol. 9, no. 1,
pp. 3–12, 2005.

[19] S. Haykin, Neural networks: a comprehensive foundation,
3rd ed. Prentice Hall, 2008.

[20] W. Cohen, “Fast effective rule induction,” in Proceedings of
the Twelfth International Conference on Machine Learning,
1995, pp. 115–123.


